The link between dental microwear and feeding ecology in tree sloths and armadillos (mammalia: xenarthra)

Publication Title

Biological Journal of the Linnean Society

Publication Date


Document Type





armadillo, bite force, chewing mechanics, diet, niche partitioning, orthodentine, teeth, tree sloth


Biology | Geology


The Xenarthra represents an enigmatic clade of placental mammals that includes living tree sloths, armadillos, and their extinct relatives, yet certain aspects of the biology of this group remains poorly understood. Here, we use scanning electron microscopy to test the hypothesis that orthodentine microwear patterns in extant xenarthrans are significantly different among different dietary groups. In a blind analysis, microwear patterns were quantified at a magnification of 500× by two independent observers for extant species from four dietary groups (carnivore–omnivores, folivores, frugivore–folivores, and insectivores). Independent observers recovered the same relative between‐group differences in microwear patterns. Insectivores and folivores have a significantly lower numbers of scratches and greater scar widths than frugivore–folivores and carnivore–omnivores, yet we were neither able to statistically distinguish insectivores from folivores, nor differentiate frugivore–folivores from carnivore–omnivores. Nevertheless, a clear distinction exists between taxa from the same trophic level and habitat, which suggests that orthodentine microwear reflects niche partitioning and habitat more than diet among related forms. We suggest that bite force and chewing mechanics have a strong influence on the formation of orthodentine microwear, which may explain some of the observed overlap between distinct groups (e.g. frugivore–folivores versus carnivore–omnivores). This study serves as a positive step forwards in our understanding of the ecological role of living xenarthrans, and serves as a foundation for using orthodentine microwear to reconstruct palaeoecology in extinct ground sloths, glyptodonts, and pampatheres.