9-2001

Measurements of the Elastic Electromagnetic Form Factor Ratio \(\mu(P)G(Ep)/G(Mp) \) Via Polarization Transfer

O Gayou

Université Blaise Pascal/IN2P3, F-63177 Aubière, France; College of William and Mary

Edgar E. Kooijman

Kent State University - Kent Campus, ekooijma@kent.edu

The Jefferson Lab Hall A Collaboration

Follow this and additional works at: https://digitalcommons.kent.edu/bscipubs

Part of the *Physics Commons*

Recommended Citation

This Article is brought to you for free and open access by the Department of Biological Sciences at Digital Commons @ Kent State University Libraries. It has been accepted for inclusion in Biological Sciences Publications by an authorized administrator of Digital Commons @ Kent State University Libraries. For more information, please contact digitalcommons@kent.edu.
Measurements of the elastic electromagnetic form factor ratio $\mu_p G_{Ep}/G_{Mp}$ via polarization transfer

(The Jefferson Lab Hall A Collaboration)

1Argonne National Laboratory, Argonne, Illinois 60439
2Université Blaise Pascal/IN2P3, F-63177 Aubière, France
3California Institute of Technology, Pasadena, California 91125
4California State University, Los Angeles, California 90032
5University of Colorado, CB 446, Boulder, Colorado 80309
6DAPNIA, Saclay, France
7Duke University, Durham, North Carolina 27706
8Florida International University, Miami, Florida 33199
9Florida State University, Tallahassee, Florida 32306
10University of Georgia, Athens, Georgia 30602
11University of Illinois, Urbana-Champaign, Illinois 61801
12INFN, Sezione Sanità and Istituto Superiore di Sanità, Laboratorio di Fisica, I-00161 Rome, Italy
13Kent State University, Kent, Ohio 44242
14Kharkov Institute of Physics and Technology, Kharkov 310108, Ukraine
15University of Lund, P.O. Box 118, S-221 00 Lund, Sweden
16University of Maryland, College Park, Maryland 20742
17University of Massachusetts, Amherst, Massachusetts 01003
18Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
19University of New Hampshire, Durham, New Hampshire 03824
20Norfolk State University, Norfolk, Virginia 23504
21North Carolina Central University, Durham, North Carolina 27707
22Old Dominion University, Norfolk, Virginia 23529
23Institut de Physique Nucléaire, F-91406 Orsay, France
24University of Regina, Regina, Saskatchewan, Canada S4S 0A2
25Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
26Temple University, Philadelphia, Pennsylvania 19122
27Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
28University of Virginia, Charlottesville, Virginia 22901
29College of William and Mary, Williamsburg, Virginia 23187

Received 29 May 2001; published 21 August 2001

We present measurements of the ratio of the proton elastic electromagnetic form factors, $\mu_p G_{Ep}/G_{Mp}$. The Jefferson Lab Hall A Focal Plane Polarimeter was used to determine the longitudinal and transverse components of the recoil proton polarization in ep elastic scattering; the ratio of these polarization components is proportional to the ratio of the two form factors. These data reproduce the observation of Jones et al. [Phys. Rev. Lett. 84, 1398 (2000)], that the form factor ratio decreases significantly from unity above $Q^2 = 1$ GeV2.

DOI: 10.1103/PhysRevC.64.038202 PACS number(s): 14.20.Dh, 13.40.Gp, 25.30.Bf, 24.70.+s

*Corresponding author. Electronic address: gilman@jlab.org
†Present address: St. Mary’s University, Halifax, Nova Scotia, Canada B3H 3C3.

0556-2813/2001/64(3)/038202(4)/$20.00 64 038202-1 ©2001 The American Physical Society
various data sets tric term contributes only about 5% of the cross section. The longitudinal measurements of the form factors used the Rosenbluth separations of charge and magnetization. Most previous G Mp uncertainty is the knowledge of spin transport. a effect the size of the uncertainties. The dominant systematic parization do not affect the ratio of the form factors, but will particular, the polarimeter analyzing power and beam polar sent in the cross section as a function of energy to bring the data within 1σ of the polarization results. In a nonrelativistic interpretation, the observed decrease of r with Q2 indicates that the charge distribution is more extended than is the magnetization distribution, although the two distributions apparently have the same rms radii.

The observed decrease of the form factor ratio has led to intense activity within various theoretical models, including the diquark model [17], the quark meson coupling model [18], relativistic constituent quark model [19], and possible SU(6) symmetry breaking [20]; there has even been some reconsideration of the perturbative quantum chromodynamics limits for the form factors [21]. Additional tests of the proton form factor ratio are planned at Jefferson Lab, using another polarimeter [22] and single-arm proton cross section measurements [23], as well as higher momentum-transfer measurements in both Hall A [24] and with a new polarimeter in Hall C [25].

Given this activity along with the lack of reproducibility of the Rosenbluth separation measurements at higher Q2, it is important to demonstrate that the polarization-transfer technique is reproducible. We have again used this technique to determine r [26]. The measurements use the same facility as those of Ref. [12], and they demonstrate the reproducibility of the results, as measured in different experiments, with different kinematics. The change in kinematics is potentially significant. Although proton momentum is constant for constant Q2, the change in beam energy and scattering angle leads to different event distributions in the spectrometer magnets and in the focal plane. Further, the variation of Pt and Pz with kinematics affects the sensitivity to the mixing of these components by the quadrupole focusing. Thus, changing kinematics tests the spin transport corrections. Reaction mechanism effects, such as two-photon exchange, depend on kinematics and, though difficult to calculate, are expected to be small [27].

In this Brief Report, we present two types of polarization measurements. First, we present 13 measurements of coincidence ep→ep polarizations, performed to calibrate the Jefferson Lab Hall A Focal Plane Polarimeter (FPP) for studies of the reactions D(γ,p)n [28] and H(γ,p)nσ0 [29]. Data for the two reactions were obtained with single-arm measure-

This method was first used by Milbrath et al. [10] to determine r at Q2=0.38 and 0.50 GeV2; good agreement with the Rosenbluth separation technique was obtained, as was subsequently the case for a Q2=0.4 GeV2 measurement from Mainz [11]. The first precise polarization transfer measurement at higher Q2 [12], from 0.5 to 3.5 GeV2, gave the surprising result shown in Fig. 1 that the form factor ratio decreases with increasing Q2. The data of Ref. [12] are well represented as

\[r = 1.0 - 0.14(Q^2 - 0.3), \]

for 0.3 < Q2 < 3.5 GeV2. Previously, it had been thought that r ≈ 1 [13], although the decrease in r had been predicted in some models [14–16]. If this difference is due to a systematic problem with the Rosenbluth separation measurements, it would require for each Q2 only a ~2% variation in the cross section as a function of energy to bring the data within 1σ of the polarization results. In a nonrelativistic interpretation, the observed decrease of r with Q2 indicates that the charge distribution is more extended than is the magnetization distribution, although the two distributions apparently have the same rms radii.

An alternative technique is provided by the polarization-transfer method [8,9], which uses the transverse (Pz) and longitudinal (Pz) components of the recoil proton polarization after the scattering of a longitudinally polarized electron beam from a hydrogen target. With kinematic factors given in the laboratory frame, \(\tau = Q^2/4M_p^2, \) \(r = \mu_p G_{Ep}/G_{Mp}, \) and \(I = r^2/\mu_p^2 + 2(1 + \tau)\tan^2(\theta_e/2), \) \(P_z = -2\sqrt{\tau(1 + \tau)}\tan(\theta_e/2)r/\mu_p I, \) and \(P_z = (E + E')/\sqrt{1 + \tau} \times \tan^2(\theta_e/2)/M_p I. \) The form factor ratio is then determined from

\[G_{Ep} = P_z/E/E' P_z/2M_p \tan \left(\frac{\theta_e}{2} \right). \]

Using the ratio of two polarization components measured at the same time greatly reduces systematic uncertainties. In particular, the polarimeter analyzing power and beam polarization do not affect the ratio of the form factors, but will affect the size of the uncertainties. The dominant systematic uncertainty is the knowledge of spin transport.
ments of the outgoing proton; for the 1H(γ,p)\pi0 reaction, the similar kinematics and count rates of protons from ep elastic scattering allowed single-arm measurements of the polarization transfer. Thus, second, we present single-arm proton polarization data from background measurements for this reaction, with the photon radiator removed. For most kinematic settings of the \pi0 photoproduction experiment, the elastic ep polarizations could be determined with uncertainties of 0.05–0.10. However, because r involves the ratio of polarizations, uncertainties on the ratio can be large; we present nine data points from the 39 singles measurements, with Q^2 up to 3.1 GeV2.

The electron polarization during the experiment was between 60% and 80%, and was determined by a Möller polarimeter every few days with \sim3% relative precision. The beam helicity state was flipped pseudorandomly at 30 Hz. Beam currents as high as 30 μA impinged on a 15-cm-long cryogenic hydrogen (LH2) target, but high data rates limited currents to a few μA at lower Q^2.

The scattered particles were detected in the essentially identical Hall A High Resolution Spectrometers. The scattering angle, momentum, and target interaction position of the event data are deduced from trajectories measured by the vertical drift chambers. For the coincidence (singles) data, elastic ep events were determined by cuts on the missing energy (reconstructed beam energy). The singles measurements include insignificant ($\sim 1\%$) single-arm backgrounds that are more suppressed in coincidence measurements—examples include misidentified π^+ and protons from the $\gamma p\rightarrow p\gamma$ reaction.

For these calibrations, it was sufficient to have statistical uncertainties on r similar to the Rosenbluth separation data, rather than the very high precision of Jones et al. [12]. The recoil proton polarization was measured in the Focal Plane Polarimeter [30]. An analyzer block of graphite is divided into four sections, so that the analyzer thickness may be adjusted as a function of proton energy. Two straw chambers before (behind) the analyzer measure the proton trajectory before (after) the reaction, to determine the scattering angles.

The physical quantities of interest, P_t and P_1, were determined by means of the maximum likelihood technique, utilizing the azimuthal distribution of the protons scattered from the graphite analyzer, $I = I_0[1 + \epsilon_x \cos(\varphi) + \epsilon_y \sin(\varphi)]$, for events with FPP polar scattering angles between 5° and 20°. The asymmetries ϵ_x and ϵ_y are proportional to the analyzing power and to the proton polarization perpendicular to its momentum as it enters the analyzer; they are linear functions of the proton's polarization components at the target. The relationship, given by a rotation which takes into account the change of coordinate system and the proton spin precession [31] in the spectrometer’s magnetic fields, is calculated on an event by event basis.

Figure 2 shows angular distributions for the polarization-transfer components at two of the 11 energies of the experiments. These data are determined from the measured asymmetries, accounting for spin transport and Möller measurements of the beam helicity, and using analyzing powers interpolated from the coincidence ep measurements of Ref. [12]. The data are compared to calculations using Eq. (2) (solid line) and $r = 1$ (dashed line). Since P_t is relatively insensitive to r, only the solid line is shown. The good agreement between the data and calculations for P_1 confirms that the product of beam polarization and polarimeter analyzing power is well understood. Note that for some points the spin transport results in a rotation of P_t of about 180°, leading to large uncertainties.

The magnitude of P_t also depends on beam polarization and polarimeter analyzing power, in addition to a nearly linear dependence on r; the tendency of the dashed and solid curves in Fig. 2 to have increasing relative differences at higher energy and at larger scattering angles can be seen. Although most of the points do not clearly distinguish between the two curves, the better agreement of the data for P_t with the solid line is again indicative of the falloff of r at larger momentum transfers.

The coincidence results are shown in Table I. Because the spin transport varies across the focal plane, the quality of the spin transport description can be checked by binning the data in the reconstructed target quantities to search for variations.

<table>
<thead>
<tr>
<th>Q^2 (GeV2)</th>
<th>E_e (GeV)</th>
<th>p_p (GeV/c)</th>
<th>r</th>
<th>Δr_{stat}</th>
<th>Δr_{sys}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>1.00</td>
<td>0.594</td>
<td>0.930</td>
<td>0.067</td>
<td>0.007</td>
</tr>
<tr>
<td>0.35</td>
<td>1.00</td>
<td>0.615</td>
<td>0.910</td>
<td>0.061</td>
<td>0.004</td>
</tr>
<tr>
<td>0.39</td>
<td>1.15</td>
<td>0.658</td>
<td>0.961</td>
<td>0.033</td>
<td>0.005</td>
</tr>
<tr>
<td>0.46</td>
<td>1.00</td>
<td>0.721</td>
<td>0.952</td>
<td>0.034</td>
<td>0.006</td>
</tr>
<tr>
<td>0.57</td>
<td>1.67</td>
<td>0.809</td>
<td>0.959</td>
<td>0.039</td>
<td>0.007</td>
</tr>
<tr>
<td>0.76</td>
<td>1.67</td>
<td>0.954</td>
<td>0.966</td>
<td>0.033</td>
<td>0.012</td>
</tr>
<tr>
<td>0.86</td>
<td>1.67</td>
<td>1.030</td>
<td>0.865</td>
<td>0.029</td>
<td>0.015</td>
</tr>
<tr>
<td>0.88</td>
<td>3.24</td>
<td>1.048</td>
<td>0.923</td>
<td>0.086</td>
<td>0.013</td>
</tr>
<tr>
<td>1.02</td>
<td>1.67</td>
<td>1.134</td>
<td>0.900</td>
<td>0.038</td>
<td>0.022</td>
</tr>
<tr>
<td>1.12</td>
<td>2.50</td>
<td>1.208</td>
<td>0.825</td>
<td>0.027</td>
<td>0.020</td>
</tr>
<tr>
<td>1.18</td>
<td>1.67</td>
<td>1.242</td>
<td>0.851</td>
<td>0.050</td>
<td>0.023</td>
</tr>
<tr>
<td>1.42</td>
<td>4.11</td>
<td>1.450</td>
<td>0.733</td>
<td>0.058</td>
<td>0.029</td>
</tr>
<tr>
<td>1.76</td>
<td>2.50</td>
<td>1.615</td>
<td>0.816</td>
<td>0.115</td>
<td>0.069</td>
</tr>
</tbody>
</table>
FIG. 3. Our results compared to earlier polarization-transfer measurements of Jones et al. [12], Milbrath et al. [10], and Dieterich et al. [11]. The dot-dashed line is the parametrization from Ref. [13], while the solid line is Eq. (2).

At the level of the uncertainties of these data, no significant variations were seen. The systematic uncertainties in r were evaluated by adding offsets equal to the systematic uncertainties in the target reconstructions to the corresponding target quantities to determine the variation of the extracted polarizations; varying the spectrometer model within COSY [31] has a smaller effect.

Figure 3 shows r obtained in this work compared with previous polarimeter measurements. The main conclusion is that we find a clear decrease in the form factor ratio above 1 GeV2, in agreement with Ref. [12]. Equation (2) represents our coincidence data with a $\chi^2_{\text{tot}} = 18$ for the 13 data points, in contrast with $\chi^2_{\text{tot}} = 113$ for $r = 1$. The nine form factor ratios determined from the proton singles measurements are also shown in Fig. 3. For these data, Eq. (2) gives $\chi^2_{\text{tot}} = 11$, while $r = 1$ gives $\chi^2_{\text{tot}} = 60$. Again, the data exhibit the decrease of r with Q^2.

In conclusion, we have demonstrated that the polarimeter performance is understood by reproducing the calculated magnitudes of the polarization components and that the polarization-transfer technique with the Jefferson Lab Hall A focal plane polarimeter yields reproducible data. We confirm the decrease of the form factor ratio $r = \mu_p G_{Ep}/G_{Mp}$ observed in Ref. [12]. The results of other experiments with different experimental equipment [22,23,25] are eagerly awaited.

The collaboration thanks the Hall A technical staff and the Jefferson Lab Accelerator Division for their outstanding support during this experiment. This work was supported by the U.S. Department of Energy, the U.S. National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, the French Commissariat à l’Energie Atomique and Center National de la Recherche Scientifique, the Italian National Institute for Nuclear Physics, and the Swedish Natural Science Research Council. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the U.S. Department of Energy under Contract No. DE-AC05-84ER40150.

[27] A. Afanasev (private communication).