Publication Title

Soft Matter

Publication Date

7-27-2006

Document Type

Article

DOI

10.1039/b608278e

Keywords

bent-core molecules, liquid-crystals, mesomorphic properties, lateral substituents, helical superstructures, mesophase behavior, homologous series, direct transition, mesogenic units, polar order

Disciplines

Physics

Abstract

The phase transitional behavior of two homologous series of five-ring banana-shaped compounds comprising fluorine substituents synthesized through covalent linking of two chemically dissimilar rod-like anisometric cores (arms) to central 1,3-phenylene is reported. The novelty of these molecules originates from the fact that the molecules are highly nonsymmetrical. One of the arms, which is either salicylaldimine or Schiff base core, possesses two vicinal fluorine atoms at the terminal ring having a n-decyloxy tail; while the n-alkyl tail attached to the other arm was varied to realize a homologous series of compounds. The mesophases have been characterized by several complementary studies. The banana-shaped systems having short or medium alkyl chain lengths form apolar columnar (two-dimensional) structures, while on ascending the series, a polar smectic phase is stabilized. Detailed electro-optical investigations on one of the polar smectic phases revealed a synclinic antiferroelectric (racemic) ground state structure, which switches, as expected, to an anticlinic ferroelectric state by the application of an electrical field. At higher field strengths applied for an extended time interval, the anticlinic ferroelectric state switches to a synclinic ferroelectric (chiral) state. Upon field removal, these domains switch to an anticlinic antiferroelectric (chiral) state, which eventually nucleates to the original antiferroelectric synclinic (racemic) state. Remarkably, the associated spontaneous polarization value exceeds 800 nC cm(-2), which is among the highest reported hitherto.

Comments

Available on publisher's site at http://dx.doi.org/10.1039/b608278e.


Included in

Physics Commons

Share

COinS