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A CLASS OF SINGULARLY PERTURBED QUASILINEAR 
DIFFERENTIAL EQUATIONS WITH INTERIOR LAYERS 

P. A. FARRELL, E. O'RIORDAN, AND G. l. SHISHKIN 

ABSTRACT. A class of singularly perturbed quaailinear differential equations 
with discontinuous data is examined. In general, interior layers will appear in 
the solutions of problems from this class. A numerical method is constructed 
for this problem class, which involves an appropriate piecewise-uniform mesh. 
The method is shown to be a parameter-uniform numerical method with re­
spect to the singular perturbation parameter. Numerical results are presented, 
which support the theoretical results. 

1. INTRODUCTION 

Convection-diffusion equations of the form (-eU$)$ + (b(u))$ = f(x), with a 
nonlinearity of the type b(u) = u2 , arise in numerous applications involving fluid 
dynamics. The Navier-Stokes equations involve such a nonlinearity, as do the drift­
diffusion equations for modelling semiconductor devices. Depending on the speci­
fied boundary conditions, boundary and/or interior layers can arise in the solutions 
of such nonlinear equations. In this paper, we examine a class of nonlinear sin­
gularly perturbed ordinary differential equations, whose solutions exhibit interior 
layers. Moving interior layers are often associated with shock waves in gas dynam­
ics. Burgers' equation is typically used as an initial mathematical model to study 
such shock layer phenomena. The nonlinear problem analysed in this paper can be 
viewed as a step towards understanding such classical nonlinearities. 

In the case of a linear singularly perturbed ordinary differential equation, classi­
cal numerical methods usually give unsatisfactory numerical results, when the sin­
gular perturbation parameter e is small. A parameter-uniform numerical method 
[4] is a numerical method for a singularly perturbed problem having an asymptotic 
error bound in the pointwise maximum norm that is independent of the size of the 
singular perturbation parameter. Parameter-uniform behaviour may be achieved 
by fitting the mesh [4] or by fitting the finite difference operator to the bound­
ary /interior layer [13]. In [5] it was proved that for a class of singularly perturbed 
sernilinear two point boundary value problems, parameter-uniform convergence in 
the maximum norm is not achievable using fitted operator schemes with frozen 
coefficients on uniform meshes. However, a parameter-uniform numerical method 
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FIGURE 1. A representative set of solutions for different values of 
E: for a problem from the class of problems given in (1.1) 

for suclt semilinear problems, whiclt are of reaction-diffusion type, that combined a 
standard finite difference operator with a fitted piecewise-uniform mesh was given 
in [6[. In this paper, we construct a parameter-uniform method, based on a stan­
dard upwind finite difference operator and a fitted piecewise-uniform mesh, for a 
nonlinear convection-diffusion problem. 

Farrell et al. [7], LinB et al. [10, 9], and Vulanovic [15] examined quasilinear 
convection-diffusion problems where the problem class was suclt that only bound­
ary layers occurred in the solutions. In the papers [7, 10, 15], parameter-uniform 
numerical methods were developed, whiclt were based on Shishkin-type piecewise 
uniform meshes [14, 12, 4] for the problem. m this paper, we examine the case of 
a quasilinear convection-diffusion problem, where interior layers can occur in the 
solutions. An analytical discussion of quasilinear problems with interior layers is 
given in [2]. 

m this paper the following class of singularly perturbed quasilinear ordinary 
differential equations with discontinuous data is considered. Let n- = (0, d), n+ = 

(d,l) and 0 = [0,1]. Find U e E C'(O) n C 2(n- u n+) suclt that 

(1.1a) E:U~(x) + b(x, u)u~(x) = f(x), x E n- u n+, ue(O) = A, ue(l) = B, 

(1.1b) b(x u) = { b,(u) = -1 + cu, x < d, f(x) = { -d" x < d, 
, b2(u) = 1 + cu, x> d, d2, x> d, 

(1.1c) -1 < ue(O) < 0, 0< ue(l) < 1, 0< c::; 1, 

where d" d2 are nonnegative constants. Note the strict inequalities in (1.1c). m 
order to study and analyse monotonically increasing solutions, we impose further 
conditions on the magnitudes of Ilflln 00 and the boundary values lue(O)I, IUe(l)l. 
These monontonicity-related restricti~ns are introduced at appropriate locations 
«3.5) and (6.2)) in this paper. A representative example of the possible solutions 
to (1.1) is given in Figure 1, whiclt illustrates the presence of an interior layer that 
steepens as E: --+ O. 

A linear version of (1.1) was studied in [3], where a parameter-uniform numeri­
cal method based on a suitably designed piecewise-uniform mesh was shown to be 
parameter-uniform of essentially first order for a linear convection-diffusion problem 
with discontinuous data. The methodology in [3] is extended in this paper to the 
quasilinear problem (1.1). Note that if Iluelin 00 < 1 in (1.1), then b,(u) < a and 

Licensed to Kent Sf Univ, Kent. Prepared on Men Jul 818:49:12 EDT 2013 for download from IP 131.123.1.227. 

License or copyright restrictions may apply to redistribution; see hHp:/Iwww.ams.orgljoumal-tenns-of-use 



QUASILINEAR PROBLEM WITH INTERIOR LAYERS '05 

bo(u) > O. For this particular sign pattern either side of the point of discontinuity, 
a strong interior layer will normally be present in the solution. Alternative sign 
patterns on the coefficient of the first derivative can result in a weak interior layer 
appearing in the solution. These alternative sign patterns are discussed in [3] in the 
case of a linear version of problem (1.1). In [8], a parameter-uniform method was 
analysed for a semilinear singularly perturbed problem with discontinuous data, 
whose solution contained an interior layer. In this case, it is relatively straightfor­
ward to establish the conditions both for existence of the continuous solution and 
for inverse-monotonicity of a linearization of the discrete finite difference opera­
tor. The conditions on the data, under which existence can be established for the 
quasilinear problem examined in the present paper are more intricate. Moreover, 
the analysis of the inverse-monotonicity property of a linearized finite difference 
operator is significantly more complicated in the case of the quasilinear problem. 

The paper is organized in the following manner. First, we establish the existence 
of the solution, and its uniqueness and derive a priori estinlates. To do this we 
utilize an asymptotic approach. We associate a set of left and right problems 
with problem (1.1). The left problem and right problem are defined to be: find 
UL(X;'Y) E C 2(n-) and UR(X;'Y) E C 2(n+) such that 

(1.2a) w1 + b,(uLJui = j, x E n- = (0, d), UL(O) = ue(O), UL(d) = 'Y, 

(1.2b) w'j, + bo(UR)U~ = j, x E n+ = (d,I), UR(d) = 'Y, uR(I) = ue(I). 

In the next section we identify a natural restiction (2.4) on the data, so that there 
exist unique regular components (see Theorem 2.3) of the solutions to the problems 
(1.2a) and (1.2b). The left regular component VL(X) is defined so that it satisfies the 
same differential equation as UL(X; 'Y) on the interval n-, agrees with UL at the left 
boundary x = 0, and the first two derivatives of VL(X) are bounded independently 
of e. Exterior to the interior layer region, the solution of (1.1) approaches the left 
(and right) regular component on n- (and n+). The multi-valued discontinuous 
regular component Ve of (1.1) is defined to be the left regular component on fi­
and the right regular component on fi+, respectively. In order for this regular 
component to be monotonically increasing, we impose a further condition (3.5) on 
the data. In §3, we first establish existence and uniqueness of UL and UR for certain 
ranges of 'Y. We then show in Theorem 3.3 that by assuming (3.5), a value 'Y* for 
the parameter 'Y can be chosen so that u~(d+,'Y*) = ui(d-,'Y*)' This establishes 
the existence of a solution to problem (1.1). In §4, the continuous solution U e to 
problem (1.1) is written as a sum ofthe discontinuous regular component Ve and a 
discontinuous singular component We. Parameter-explicit bounds on the first three 
derivatives of these two components are established in Lemma 4.2. The magnitude 
of the singular component is negligible outside of a O( e In e)-neighbourhood of the 
point x = d. 

Based on these a priori bounds, a fitted mesh is constructed in §5. A nonlinear 
finite difference method is introduced and the existence of a discrete solution is 
established using appropriate choices of discrete lower and upper solutions. The 
existence of a discrete regular component is also established in this section. In §6 
the main result (Theorem 6.2) of the paper is given. This shows that the numerical 
method produces numerical approxinlations, which converge to the unique solution 
of the continuous problem (1.1). The rate of convergence is independent of the 
small parameter e. The method of proof reqnires that a discrete linear operator 
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(associated with the nonlinear difference operator) preserve inverse-monotonicity. 
This requirement inlposes an additional constraint (6.2) on the data for problem 
(1.1). At the end of §6, the implications of this assumption are discussed. 

Numerical results are given in §7 and the appendix (§8) deals with discrete 
comparison principles for related linear problems, which are used in §6 in the proof 
of the main convergence result. 

Throughout the paper C denotes a generic constant that is independent of e and 
the mesh parameters. We always use the pointwise maximum norm and denote it 
by IlzliD = max.ED Iz(x)l. For notational convenience, we will omit the subscript 
when D = f! and sinlply write Ilzll. 

2. EXISTENCE AND UNIQUENESS OF THE REGULAR COMPONENT 

The regular components VL and VR of any possible solutions to problems (1.2a) 
and (1.2b) are formally defined to be the solutions of the two boundary value 
problems 

(2.1a) 

(2.1b) 

ev£ + b,(VL)V~ = t, x < d, 

VL(O) = ue(O), vL(d) = vo(d-) + ev,(d-), 

ev~ + b2(VR)V;' = t, x> d, 

VR(d) = vo(d+) + ev,(~), vR(l) = ue(l), 

where Vo and v, are solutions of the following noulinear first order problems 

(2.2a) 

(2.2b) 

b(x,vo)vh = t, x E n- u n+, vo(O) = ue(O); vo(l) = ue(l), 

evg + b(x,Vo +ev,)(vo +ev,)' = t, x E n- u n+, 
v,(O) = 0, v,(l) = o. 

By simply integrating, we have that the reduced solution Vo satisfies the quadratic 
equations 

(2.3a) (1 - 0.5cue(0))ue(0) + o,x = (1 - 0.5cvo(x))vo(x), x < d, 

(2.3b) (1 + 0.5cue(1))ue(1) - 02(1 - x) = (1 + 0.5cvo(x))vo(x), x> d. 

IT we assume that 

(2.4) o,d < -ue(O) + 0.5cu~(0) and 02(1 - d) < ue(l) + 0.5cu~(1), 
then there exists a unique reduced solution Vo E C'(n-)UC'(n+) with the property 
that vo(x) < 0, x E n- and vo(x) > 0, x E n+. Note the following additional 
properties of the reduced solution Vo when (2.4) is satisfied: 

b,(vo)(x) < -l,x < d, b,(vo)(x) > 1,x > d, 

vh(x) > 0, x,,; d, 

0, > vh(x) > 1 _ :e(O)' x < d, vh(x) > 1 + :e(l)' x> d, 

"( ) - -C(Vh)2 (d )"() 0 ..L d vox -b( )' -xvox>, x,. 
X,Vo 

From these properties and the fact that 

vo(d-) = lad vh(x)dx + ue(O), vo(d+) = ue(l) -[ vh(x)dx, 
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QUASILINEAR PROBLEM WITH INTERIOR LAYERS '07 

we deduce the following bound on the jump in the reduced solution at x = d, 

+ (O,d 02(1-d)) 
(2.5) [vo](d) := vo(d ) - vo(d-) < uE(l) - uE(O) - 1 _ CUE (0) + 1 + CUE(l) . 

Let us now examine the second term v, (X) in the expansion of the regular com­
ponent v(x). Note that b(x, Vo + "V,) - b(x, vol = cov,. Hence, on both 0- and 
0+, 

(2.6) b(x, Vo + "v,)v; (x) + cvbv, (x) = (b(x, vo)v,)' + (0.5cov~)' = -v~(x). 

On 0-, integrate this equation from t = a to t = x, and on 0+, integrate from 
t = 1 to t = x. This yields a quadratic equation in v, of the form 

i-
1X v~(t) dt < 0, x < d, 

b(x, vo)v, + 0.5cov~ = 1,0 
v~(t) dt < 0, x> d. 

x 

On each subdomain, we require" to be sufficiently small so that 

b~(vo) > 2co 1x 

v~(t) dt, x En-and b~(vo) > -2co l' v~(t) dt, x E 0+. 

With this restriction on to, there are two possible solutions vr, vt with a < vr < 
vt, x E 0- and vt < vr < 0, x E 0+. Define v, uniquely by setting v, = vf. 
Consider a quadratic of the form k(x) = 0.51"X2 -mx+I, where I, m,I are positive 
constants and " is sufficiently small so that m2 > 2/d. Then the minimum of 
k occurs at x = m/(I,,). Since k(2Ilm) < 0, we note that the smallest root of 
k(x) = a is smaller than 211m. Hence, on the intervals 0- and 0+ select the 
smallest roots such that 

-2 f; v~(t) dt 
b,(vo) >v, >0, 

2 f' v"(t) dt 
x E 0-, 0> v, > "b,(vo) , x E 0+. 

This yields a unique v, (with v;(x) > 0), which is bounded independently of" and 
from (2.6) it follows that 

Iv;(x)1 ::; 0, Iv~(x)l::; O. 

To establish the existence and uniqueness of the regular component, we employ 
the technique of upper and lower solutions. 

Definition 2.1. A function a E 0'(0-) is a lower solution of problem (1.2a) if 

(2.7) ca" + b,(a)a' 2: f, x < d and a(O)::; uE(O), a(d)::; "I. 

An upper solution fI is defined in an analogous fashion, with all inequalities 
reversed. Consider the general quasilinear problem 

"y" = g(x, y, 11'), x E J = (0,,02). 

Let 9 E O[J x IR x 1R;1R] and a,fI E O[J,IR] with a(x)::; fI(x),x E J. Suppose that 
for x E J, a(x) ::; y(x) ::; fI(x), 

Ig(x,y,y')I::; '11(111'1), 

where '11 E 0[[0,00),(0,00)]]. If 

1"" B 
.T,( ) dB> maxfl(x) - mina(x), 

>.. 'J! S 3:EJ 3:EJ 
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where A(a2-a,) = ma.x{la(a,)-,8(a,)I, la(a,)-,8(a,)I}, then we say that 9 satisfies 
a Nagumo condition on J relative to the lower and upper solutions [I]. 

The nonlinearity in (1.2a) (and (1.2b)) satisfies a Nagumo condition for any 
bounded a and ,8, since we can take \Ii(x) = Ilfll + 'YX, 'Y := SUP,,~y~,8lb,(y)l. 
Thus we can cite the following existence result. 

Lemma 2.2 ([1, page 31]). If a,,8 E c'(n-,lR) are lower and upper solutions 
for the problem (1.2a) and a(x) :0:; ,8(x) , 'Ix E n-, then there exists a solution 
UL E C2(n-,lR) to (1.2a) and a(x):O:; UL(X):O:; ,8(x), 'Ix E n-. 

Hence, to establish existence of a regular component VL on n-, it suffices to 
construct lower and upper solutions. 

Theorem 2.3. Assume (2.4). There is a unique regular solution to (2.1a) and 
VL E COO(n-, [u,(O), 0)), with VL(X) 2: vo(x). 

Proof. Note that, by assuming (2.4), vo(d-) < 0 and for e sufficiently small, 

vo(d-):O:; VL(cf) = vo(d-) + ev,(d-) < O. 

Since vL(d) < 0 on n-, we can use the lower and upper solutions a(x) = vo(x) 
and d,8(x) = -u,(O)(x - d) to establish existence of a regular solution VL satisfying 
(2.1a) and (2.4) on n-. Suppose V"V2 E C2((0,cf), [U,(O), 0)) are two regular 
solutions of (2.1a) and let .p = v, - V2. Then 

e.pl! = .p' + 0.5c( v~ - v~)', .p(0) = .p( cf) = O. 

Integrating from x = 0 to x = t yields e.p'(t) - (1 - 0.5c(v, + V2)(t)).p(t) = e.pI(O). 
Since .p(cf) = 0, .p(t) == O. Hence the solution of (2.1a) is unique. D 

There is an analogous result for the existence and uniqueness of a solution VR E 
COO(n+, (0, u,(l)]) of (2.1b). Define the regular component of any solution to (1.1) 
to be the multi-valued discontinuous function 

x~ d, 
(2.8) 

x 2: d, 

where VL is the solution of (2.1a) and VR is the solution of (2.1b). 

3. EXISTENCE AND UNIQUENESS OF THE CONTINUOUS SOLUTION 

In this section we establish the existence of UL(X;'Y) (and UR(X;'Y)) for a certain 
range of 'Y. Under additional assumptions on the data, we will show that UL(X;'Y) 
and UR(X;'Y) both exist for a common range of 'Y. To this end, we define the 
barrier functions XL (X; 'Y), XR(X; 'Y) as the respective solutions of the boundary 
value problems 

(3.1a) eX1+(-1+c-y)X~ = -15" XL(O) =u,(O), XL(cf) ='Y, 
(3.1b) eX'k + (1 + C-Y)x'R = 152 , XR(cf) = 'Y, XR(l) = u,(l). 

Lemma 3.1. For all 'Y E [VL(cf),~) such that 

(3.2) d,d:O:; (1 - C-Y)('Y - u,(O)), 

problem (1.2a), (2.4) has a unique solution UL(X; 'Y) E C2 ((0, cf), [u,(O), 'YI) with the 
property that 
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QUASILINEAR PROBLEM WITH INTERIOR LAYERS '09 

Forall,,(E (-~,vR(d)l such that 

(3.3) d2(1 - d) ~ (1 + cry)(ue(l) - "(), 

problem (1.2b), (2.4) has a unique solution UR(X; "() E C2 (0, d), [,,(, ue(l)]) with the 
property that 

Proof. Note that 

where 

d, 
XL(X;"() = -1 -x +ue(O) +K,p(x;,,(), 

-cry 

e,p" - (1- cry),p' = 0, ,p(0) = 0, ,p(d) = 1, K = (1 - cry)("( - ue(O)) - d,d. 
1- cry 

Also by (3.2) K 2': ° and so X~ > 0. Hence 

eX1 + b'(XL)X~ = -d, + (b,(XL) - (-1 + cry))X~ 
= -d, + e(XL - ,,()X~ ~ -d,. 

An analagous argument is used to establish the existence of UR(X;"(). 0 

If 

(3.4a) 

and 

(3.4b) d2(1 - d) ~ ue(l) - CVL(d) G -ue(l) + VL(d)) , 

then by the previous lemma UL(X;VR(d)) and UR(X;VL(d)) both exist. Hence to 
guarantee the existence of a continuous solution u(x; "() defined over the entire 
interval [0,1[ for all "( E [vL(d), VR(d)] , we are required to restrict the data of 
problem (1.1). Hence we are led to the following assumption. 

Assumption 1. Assume that the problem data for problem (1.1) are such that 

(3.5a) d,d < -ue(O), d2(1- d) < ue(l) 

and 

. { d,d d2(1 - d) } 
(3.5b) ue(l) - ue(O) < l/e + mill 1 _ CUe (0) , 1 + cu

e
(l) . 

Note that (3.5) inlplies (2.4). By the properties of vo(x) established in §2, it 
follows from (3.5) that, for e sufficiently small, 

0> vL(d) > 1 - cue(l) and 0< vR(d) < 1 + CUe (0) . 
e e 

The assumption (3.5) suffices for the inequalities (3.4) to hold true and consequently 
for UL(X;"() and UR(X;"() to exist for all "( E [vL(d),VR(d)]. ill the next lemma we 
establish that u~(x;"() and uj,(x;"() depend continuously on the parameter "(. 

Lemma 3.2. Assuming (3.5), for all "(,,"(2 E [VL (d) , VR(d)], 

elu~(x; ,,(,) - U~(X; "(2)1 ~ CI"(, - "(21, x E (0, d), 
eluj,(x;,,(,) - uj,(x;"(2)1 ~ CI"(, - "(21, x E (d, 1). 
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Proof. Let G(x;'Yl, ')'2) = UL(X;')',) - UL(X;')'2). Note that 

£G" + (-1 + ~(UL(X;')") + UL(X;')'2))) G' = 0, G(O) = 0, G(d) = ,)" - ')'2, 

and (-1+HUL(X;')',)+UL(X;')'2)) ~ -1+0.5c(')', +')'2) ~ -1+CVR(d) ~ CUe (0) < O. 
It follows that £IG'I ~ 01')', - ')'21. 0 

We now state a central result in this paper. 

Theorem 3.3. Assuming (3.5), the nonlinear problem (1.1) has a unique solution 
Ue E C'((O, 1), (ue(O), ue(l)). Moreover, 

VL(X) ~ ue(x) ~ XL(X;VR(d)), x ~ d, XR(X;VL(d)) ~ ue(x) ~ VR(X), x 2: d, 

where XL,XR are defined in (3.1). 

Proof. For all x E n-, 

Eo (J - b,(uL)ujJ(t) dt = (UL(X) - Ue(O)) (1 - 0.5C(UL(X) + ue(O))) - o,x. 

Integrating (1.2a), from a to x, yields 

w~(x; ')') = w~(O; ')') + (UL(X; ')') - ue(O)) (1 - 0.5C(UL(X; ')') + ue(O))) - o,x. 

By the Mean Value Theorem, for some Z E (0,£), £ < d, w~(z;')') = UL(£;')')­
ue(O). Since 0')' < 1 and (3.2), using the lower and upper solutions given in Lemma 
3.1, we deduce that, for all ')' E [VL(d),VR(d)I, 

a ~ UL(Z;')') - ue(O) ~ Co, a ~ u~(O;')') ~ C. 

For all x E n+, 

Lx (J - b,(uR)uk)(t) dt = 02(1- x) + (UR(X) - ue(l)) (1 + 0.5C(UR(X) + ue(l))). 

Integrating (1.2b) from x to 1 yields 

wk(x; ')') = w'(l; ')') - 02(1 - x) + (ue(l) - UR(X; ')')) (1 + 0.5C(UR(X; ')') + ue(l))). 

Since 0')' > -1, using (3.2) and the lower and upper solutions given in Lemma 3.1, 
we deduce that, for all ')' E [VL(d),VR(d)l, 

a ~ uk(l;')') ~ C. 

We wish to establish the existence of a ')'* = UL(d) = UR(d) such that u~(d-;')'*) = 

uk(d+;')'*) and -1 < 0')'* < 1. This is equivalent to finding a ')'* such that -1 < 
0')'* < 1 and 

w~(Od) + (')'* - ue(O))(l- 0.5c(')'* +ue(O))) - o,d 

= wk(1d) - 02(1- d) + (ue(l) - ')'*)(1 +0.5c(')'* + ue(l))). 

Rearranging, gives 

2')'* = wk(l; ')'*) -w~(O; ')'*)+o,d+ue(O) -0.5cu~(0) +ue(1)+0.5cu~(1) -02(1-d). 

By (2.3), this further simplifies to 

(3.6) 2')'* = r + £uk(1d) - £u~(Od), 

where r := vo(d+) + vo(d-) + 0.5cv~(d+) - 0.5cv~(d-). Define the function 

H(')'):= r+wk(l;,),) - w~(O;')') - 2')'. 
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QUASILINEAR PROBLEM WITH INTERIOR LAYERS "' 

leu~(I;,) - eu~(O;,)1 :-:; Ge. 

Note that VL(d) < 0 < VR(d) and so, for e sufficiently small, H(VL(d)) > 0 > 
H(VR(d)). By Lemma 3.2, H is a continuous function of " so there exists a ,* E [vL(d), vR(d)], where H(!*) = O. Hence we have established the existence of 
a solution Ue E G'((O, 1), (ue(O),ue(I)) to problem (1.1), (3.5). 

Let u+,u- be two solutions of problem (1.1). The difference in these two solu­
tions is y := u+ - U- E G'((O, 1), (ue(O), ue(I)) and solves the problem 

ey" + b(x,u+)(u+Y - b(x,u-)(u-Y = 0, y(O) = y(I) = O. 

Integrate over n- and over n+ to get 

1 
ey' - y + 2c(u+ + u-)y = ey'(O), x E n-, 

1 
ey' + y + 2c(u+ + u-)y = ey'(I), x E n+. 

Using integrating factors and integrating again, we have that 

~r=l!l r 1 
y = y'(O)e ' 10 e ' dt, p(x) = 10 1 - 2c(u+ + u-) dt, x En-, 

-,(.j {' n<2 (' 1 
Y = -y'(I)e • 1. e' dt, q(x) = 1. 1 + 2c(u+ + u-) dt, x E n-. 

Note that y is continuous at x = d, so from above y'(O)y'(I) :-:; O. If y'(0) = 0, 
then y = 0 for x E n-, which implies that y( d) = O. This, in turn, inlplies that 
y = 0, x E n. Without loss of generality, let us assume that y' (0) > O. From the 
expression for y above, y > 0, for x E n-. Aiso, from the expression for y' and the 
fact that 1- ~c( u+ +u-) > 0, we deduce that y' > 0, for x E n-. Also, if y' (0) > 0, 
then y'(I) < O. Repeating the above argument, we deduce that y'(x) < O,x E n+. 
Hence, the maximum value of y occurs at x = d. Subtracting the two expressions 
for the derivative of y at x = d, yields 2y(d) = e(y'(I) - y'(O)) < 0, which is a 
contradiction. Hence y' (0) = 0, which implies that y = O. This establishes the 
uniqueness of us. D 

Remark 3.4. Note that for the solution to (1.1), (3.5) we have that 

b,(ue):-:; b,(VR(d)):-:; -1 + CVR(d) < cuetO) < 0, x:-:; d, 

b,,(u€) ;::: b2 (VL(d)) ;::: 1 + CVL(d) > cu€(I) > 0, x;::: d. 

Recall that we also have Ib, (ue)1 > 1-cue(I), x :-:; d and b,,(ue) > 1 +cue(O), x;::: d. 
Combining these we get 

(3.7a) 
(3.Th) 

Ib,(u€)1 > 6, := maxi -cuetO), 1 - cUe (I)}, x:-:; d, 
b,,(ue) > 62 := max{cue(I), 1 + CUetO)}, x;::: d. 

In the next lemma we state parameter-explicit pointwise estimates on the deriva­
tives of the solution to (1.1), (3.5). 

Lemma 3.5. Let U e be the solution of (1.1), (3.5), then, for aliI :-:; k :-:; 3, 

IU~k)(x)1 :-:; Ge-k , x E n- u n+. 
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11. P. A. FARRELL, E. O'RIORDAN, AND G. I. SHISHKIN 

Proof. Use the argument from the proof of the previous lemma to establish that 
leu~1 :s C. Then use the differential equation (1.1a) to get the bounds on the second 
and third derivatives of Ue • D 

4. A PRIORl BOUNDS ON THE SINGULAR COMPONENT 

Since the solution Ue of (1.1) and the regular component Ve defined in (2.8) are 
uniquely defined, we can define the discontinuous singular component We implicitly 
by Ue = We + Ve and 

(4.1a) eU~ + b(x, ue)u~ = f, X # d, 

(4.1b) Ue E C'(O, 1), ue(O) = A, ue(l) = B. 

Since Ue and Ve are unique, we have that Ilwell = IIUe -veil :s Iluell + Ilvell :s C, and 
the singular component We is the solution of 

eW~ + b(x, Ue)W~ + (CV~)We = 0, x # d, We(O) = we(l) = 0, 

[we](d) = -[ve](d), [w~](d) = -[v~](d), [w](d):= w(d+) - w(d-). 

Let Le denote the linear differential operator, which is defined as 

LeW := ew" + a(x)w' + b(x)w, 

where 
a(x) :s -or, < 0, x < d, a(x) 2: or. > 0, x> d, 

and, for or = min{or" or.}, or' - 4eb > 0, 'Ix # d. 
The differential operator Le satisfies the following comparison principle. 

Lemma 4.1. Suppose that a function w E CO(fI) n c'(n- u n+) satisfies w(O) :s 
0, w(l) :s 0, [w']( d) 2: 0, and Lew(x) 2: 0, for all x E n- u n+, then w(x) :s 0, for 
all x E fl. 

Proof. Follow the proof of the corresponding result in [3], but include the zero-order 
term in the proof. futroduce the function v(x), defined by 

w(x) = e-<>(x)lx-dl/(2e)v(x), 

where a(x) = a" x < d, or(x) = a2, x> d. Hence, for x E n-, 

LeW = e-9(x)lx-dl/(2e) (eVil + (a + or,)v' + (~! + ";;:' + b)V) , 

and for x E n+, 

LeW = e-<>(x)lx-dl/(2e) (eVil + (a - or2)V' + (~; _ a~2 + b)V) . 

Assume that maxn V = v( q) > O. With the above assumption on the boundary 
values, either q E n- u n+ or q = d. If q E n-, then 

Lew(q) = e-",(d-q)/(2e) (eVII(q) + (b- ~!)V(q)) < 0, 

which is a contradiction. If q E n+, then an analogous argument also leads to a 
contradiction. The only possibility remalning is that q = d. Note that [v](d) = 
[w](d) = 0 and [w'](d) = [v'](d) - "'i;,"'v(d). Since d is where v takes its maximum 
value, v' (d-) 2: 0, v' (d+) :s 0, which implies that [v']( d) :s o. This implies that 
[w'](d) < 0 , which is a contradiction. D 
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QUASILINEAR PROBLEM WITH INTERIOR LAYERS 113 

Lemma 4.2. Assume (3.5). For each integer k, satisfying 1 ::; k::; 3, the solutions 
Ve and We of (2.8) and (4.1), respectively, satisfy the following bounds: 

IIvell::; C, Mk)llll-ull+::; C(l +E2
-

k
), 

I[ve](dJl ::; C, l[v~](d)1 ::; C, I[v~](dJl ::; c, 
x E n-, 
x E n+, 

where C is a constant independent of E, and Ii" 1i2 are given in (3.7). 

Proof. Define V2 to be such that Ve := Vo + EV1 + E2V2. From above such a function 
exists and is unique. Note that V2 is the solution of 

E(V~ + EV~ + E2V~) + b(X,ve)(vh + EV; + E2V~) = f = b(x,vo)(vo)', x # d. 

Hence 
EVil + Eb(x,ve)(v; +EV~) = -ce(V1 + EV2)vh, 

which can be written in the form 

v" + b(x, ve)(v; + EV~) = -C(V1 + EV2)vh. 

From the definition of V1, we have that 

b(x,v)v; = (b(x,v)-b(x,vo+EVd)v; -CVhV1-V~. 

illserting this into the equation above and simplifying, shows that V2 satisfies the 
following problem: 

(4.2a) 

(4.2b) 
EV~ +b(x,v)v~ +c(vh + EvDv2 = -v~, x # d, 

V2(0) = v2(d) = v2(1) = o. 
Note that vh + EV; > 0 and, for E sufficiently small, b2(x, v) - 4CE(vh + EV;) > o. 
We rewrite (4.2a) in the form 

EV~ = g(X,V2) := -(b(x,v)v~ + c(vh + EvDv2 + vn. 

Define M1 := IIv~1I and fh := minc(vh +EV;) > O. Check that a(x),19(x) defined 
by -191a(x) = 19119(x) = M1 are lower and upper solutions. Thus 

M1 
IIV211 ::; Pt· 

Note that 
EV~ + b(x,v)v~ = g1 := -v~ - c(vh + EV;)V2, 

which implies that IIv211 ::; Cxllgtli, x < d. Thus Iv~(O)1 ::; C, and using integration 
we have Iv~(x)1 ::; c, x < d. The bounds on the derivatives of V2 follow. 

Now we estimate the singular term. Note that 

eu~ + b(x, ue)u~ = f = EV~ + b(x, ve)v~, x # d. 

Hence 

EW~ + (b(x,ue) - b(x,ve))v~ + b(x,ue)w~ = EW~ + b(ue)w~ + (cv~)we = 0, x # d, 

and we(O) = 0, we(l) = 0, we(d-) = ue(d-) - ve(d-), we(d+) = ue(d+) - ve(d+). 
Choose E sufficiently small so that b"(x, ue) - 4ECV~ > O. Then we can apply the 
arguments from the linear problem [3] and Lemma 4.1 to get bounds on We and its 
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114 P. A. FARRELL, E. O'RIORDAN, AND G. I. SHISHKIN 

derivatives separately on n- and n+. Note that we require 0 sufficiently small so 
that the barrier function 

B(x) = { 

satisfies the inequalities 

oB"(x) +b,(ue)B' +cv~B < 

oB"(x) + b2(ue )B' + cv~B :::; 

Ce-(d-z)91 /e, 
Ce-(x-d)6,/e, 

x E n-, 
x E n+, 

~{91(11, -lb1(ue)l) +o(cv~)}B < 0, x E 0-, 
o 

~{92(92 - b,(ue)) + o(cv~)}B < 0, x E n+. 
o 

5. EXISTENCE OF DISCRETE SOLUTIONS 

The domain n is subdivided into four subintervals 

(5.1a) [0, d - Ul] U [d - u" d] U [d, d + U2] U [d + U2, 1]. 

The transition points Ul and U2 are defined by 

(5.1b) Ul=minH,2:'lnN}, U2= min r;d, 2;2 InN} , 

D 

where 9, = max{ -CUe (0), 1 - cue(l)} and 92 = max{cue(l), 1 + CUe (a)} as defined 
in (3.7). On each of the four subintervals a uniform mesh with It mesh-intervals 

is placed. The mesh points are denoted by n: = {x,}b" , where Xo = 0, XN = 

1, XN/2 = d. The fitted mesh method for problem (1.1) is: find a mesh function 
Ue such that 

(5.2a) 002Ue(X,) + b(x" Ue(x,))DUe(x,) 

(5.2b) Ue(O) = ue(O), 

(5.2c) D-Ue(d) 

where 

f(x,) for all 

Ue(l) = ue(l), 
D+Ue(d), 

Xi E n~, 

02Z,= D+Z,-D-Z, and DZ,={ D~Zi' i<N/2, 
(Xi+l - x'_1)/2 D Z" i > N/2. 

Here D+ and D- are the standard forward and backward finite difference operators, 
respectively. This is a nonlinear finite difference scheme. 

Let G : JRN+1 --> JRN+1 be a mapping associated with this finite difference 
scheme. For mesh function Y, we have an associated vector Y E ]RN+1, where 
Yi = Y(x,). Let 

(GY), = oO:Yi + b(x" Yi)DYi, i '" N/2, 0< i < N, 
00 Yi, • = N/2, l
-Y(O)' i = 0, 

-Y(l), i = N. 

We also define a vector F by 

F, = { 
A,O,B, 
f(x,), 

i = 0,N/2,N, 
otherwise. 

The finite difference scheme (5.2) can then be written in the form GUe = F . 

Definition 5.1. Given any vector H E JRN+1, a lower mesh solution V for the 
problem GW = H is a mesh function, which satisfies GV 2: H. 
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There is an analogous definition for an upper mesh solution to GW = H. 

Theorem 5.2. If <I> and llt are, respectively, lower and upper mesh solutions for the 
problem GW = H, with the additional properties that -1 < c<l> < 1, -1 < cllt < 1, 
and <I>(x,) ~ llt(x,), 'Ix, E fiN, then there exists a solution to GW = Hand 
<I>(x,) ~ W(x,) ~ llt(x,), 'Ix, E fiN. 

Proof. We follow the argument from Lorentz [11]. Let <1>" <1>2 be two lower mesh 
functions. Define the mesh function <1>3 by <l>3(X,) := max{ <1>, (x,), <l>2(X,)}. At 
some point Xj, we assume, w.l.o.g., that <l>3(Xj) = <I>,(Xj). Note that -<I>3(Xi) ~ 
-<I>,(Xi), 'Ix,. For any Xj, 

g02<1>3(Xj) 2: g02<1>,(Xj) 

<1>3(0) ~ H(O), 

2: g02<1>,(Xj) + b(xj, <I>,)D<I>,(xj) 

> H(xj), Xj"; d, 

> H(d), Xj = d, 

<1>3(1) ~ H(I). 

Then <1>3 is also a lower mesh solution. Let L = {ct> : Gct> 2: H, <I> ~ ct> ~ llt} be 
the set of all possible lower mesh solutions. Define U(x,) := sUP4'Ed ct>(x,)}. First 
note that U E L exists and GU 2: H. Assume that we do not have equality, then 
there exists some j such that GU(Xj) > H(xj). If U ,,; llt, construct a new vector 
y = U + 'Yo,,;, 'Y > O. Then 'Y can be chosen sufficiently small such that 

GY = GU + c(Y - U)DU 2: H. 

Hence, Y E L, U < Y, which is a contradiction. o 

Define the mesh functions VL and VR to be the solutions of the following discrete 
nonlinear problems: 

(5.3a) 

(5.3b) 

(5.3c) 

(5.3d) 

Lf:ftVL := {g02 +b'(VL)D-} VL(x,) = -0" Xi E n: n n-, 
VL(O) = vetO), VL(d) = ve(d-), 

L;[ght VR := {g02 + !J,(VR)D+} VR(X;) = 02, Xi E n: n n+, 
VR(I) = ve(I), VR(d) = veW). 

In an analogous fashion to Theorem 5.2 we have the following 

Theorem 5.3. If <I> and llt are two mesh functions such that 

<1>(0) ~ VL(O) ~ llt(O), 

<I>(d) ~ VR(d) ~ llt(d), 

Lf:,. <I> 2: Lf:,. VL 2: Lf:ft llt , 

with the additional properties that 

-1 < c<l> < 1,-1 < cllt < 1, 

then there exists a solution to (5.3) and 

<I>(d) ~ VL(d) ~ llt(d), 

<1>(1) ~ VR (I) ~ llt(I), 

L~ght q> ~ L~ght V R ~ L~ght qr 
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From (2.4) ue(O) :::; ve(d-) :::; 0 and ue(l) ;::: ve(d+) ;::: 0, we can use the following 
mesh function: 

() ( ) A ( .) - Ve(l)(Xi - c1) . > d A, Xi = Ue 0 , Xi :::; d, 'X, - 1 _ d ,X, _ , 

X· 
B,(Xi) = ve(O)(l- d), Xi:::; d, B,(Xi) = ue(l), Xi;::: d, 

to show that VL and VR exist using the previous theorem. Hence A, :::; VL :::; B, :::; 
0, 0:::; A, :::; VR:::; B, and thus b'(VL):::; -1, b,(VR);::: 1. 

Lemma 5.4. Assume (3.5). Given any VL, VR, solutions to (5.3), we have that 

WL(X;) - ve(x,)1 :::; CN-'x" X, E 0;' n fl-, 
WR(X,) - ve(xi)1 :::; CN-'(l- x;), x, E 0;' n fl+, 

where Ve is the unique regular component defined in (2.8). 

Proof. We outline the proof for the first inequality. An analogous argument will 
establish the second inequality. For all x, E fl;' n fl- , 

{eli" +b'(VL)D-} (VL - vel = ev~ + b,(ve)v~ - {eo2 +b'(VL)D-} (ve) 

= e(v~ - 02Ve) + b,(VL)(V~ - D-ve) + (b,(ve) - b,(vLl)v~ 

= e(v~ - 02Ve) + b,(VL)(V~ - D-ve) + C(Ve - VL)V~ . 

futroduce the linear difference operator 

M~ Z:= (eo2 + b'(VL)D- +cv~)Z. 

Note that Ilcv~11 :::; C and so, by Lemma 8.3 in the appendix, this finite difference 
operator satisfies a discrete comparison principle, provided that e is sufficiently 
small such that 

(5.4) 

Using the bounds in Lemma 4.2 and standard local truncation error estintates, we 
get 

IM~(VL - ve)(x,)1 :::; CN-'. 

With the two functions t/J±(x,) = CN-'x, ± (VL - ve)(x,), and the discrete com­
parison principle the proof is completed in the usual way. D 

To establish uniqueness for the discrete regular component VL , we first obtain 
bounds on the discrete derivative of any possible regular component VL . 

Lemma 5.5. Assume (3.5). For any VL, we have the following e-uniform bounds 

( N-') ID-VL(x;)l:::; C, x,:::;d-(], and ID-VL(x,)I:::;C 1 + -e- ,d-(], <x,:::; d. 

Proof. Note that D-VL(x,) = D-(VL - ve)(x,) +D-ve(x,) - v~(x,) +v~(x,). We 
also have Ilv~1I :::; C and, as in [4, page 60], ID-ve(x,) - v~(x,)1 :::; CN-'. Hence, 

ID-VL(x,)I:::; ID-(VL - Ve)(x,) I +C. 
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On (0, d- U1], using the previous bound on I(VL - ve)(xi)l, we get that ID-(VL­
ve)(xi)1 :s C. As in [4, pp. 61 and 62], eID-(VL - ve)(xi)1 :s CN-1 on (d - U1, d], 
where we note that we use 

Ib, (VL)(Xi) - b, (VL)(Xi_,)1 = C!VL(Xi) - VL(Xi-1)1 

:s !VL(Xi) - ve(xi)1 + Ive(x,) - ve(xi-dl + !VL(Xi-1) - Ve(Xi_1)1 :s CN-1. 

This completes the proof. o 
Lemma 5.6. There exist unique solutions VL and VR to the discrete problems (5.3) 
and (3.5). 

Proof. Assume the contrary. Let vt, Vi be two mesh solutions, then 

e02Vi + b,(Vi)D-Vi = e02Vt + b,(Vt)D-vt, Xi < d, 

(Vt - Vi)(O) = (Vt - VL-)(d) = O. 

Thus e02(Vt - Vi) + b, (Vt)D-(Vt - Vi) + cD-Vi(Vt - Vi) = O. From the 
previous lemma and Lemma 8.3, the linear difference operator 

L:Z:= e02Z +b, (VtJD- Z + (cD-Vi)Z 

satisfies a discrete comparison principle. This guarantees uniqueness. o 
We are now ready to state the discrete counterpart to Theorem 3.3. First we 

define the discrete barrier functions 3L(Xi;,),3R(Xi;,) as the solutions of 

e023 L + (-I + C/)D-3L = -0" Xi E (0, d), 3 L(0) = ue(O), 3 L(d) = " 

e023R + (I + C/)D+3R = 02, Xi E (d, I), 3R(d) = " 3R(I) = ue(I). 

Theorem 5.7. There exists a solution U!' to the discrete problem (5.2), (3.5) and 

VL(Xi) :s U!'(Xi):S 3 L(Xi;VR(d)), Xi:S d, 

3 R(Xi;VL(d)) :s U!'(Xi):S VR(x,), Xi 2: d. 

Proof. The argument is the discrete analogue of the argument given to establish the 
existence ofthe continuous solution. Define UL(Xi; I), UR(Xi; ,) to be the solutions 
of the problems 

e02UL + b, (UL)D-UL = -0" Xi E (0, d), 

e02UR + bo(UR)D+UR = 02, Xi E (d, I), 

UL(O) = Ue(O), UL(d) = " 

UR(d) = " UR(I) = ue(I). 

From assumption (3.5), we have that for all, E [VL(d), VR(d)] both problems have 
a solution UL(Xi;,),UR(Xi;,) and 

VL(Xi):S UL(Xi;,):S 3L(X,;,), 3R(Xi;,):S UR(x,;,):S VR(x,). 

Note the following: 

eD-VL(d) 

eD+3R(d;,) 

evi-W) + e(D-VL(d) - vi-(d)) = O(e) + 0(N-1), 

ee;,(~;,) + e(D+3R(d;,) - e;,W;,)) 
2: (I + C/)(Ue(I); ,) - 02(1- d) + 0(10) + O(N-'). 

Hence, for e sufficiently small and N sufficiently large, 
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Use the following: 

{! = { ~L(Xi)' 
"'R(X,; vL(d)), 

if Xi :s d, 
if X, 2': d, 

as lower and upper mesh solutions to establish the existence of Ue • D 

Remark 5.8. If there exists a solution Ue to the discrete problem (5.2), (3.5) with 
the additional property that 

(5.5a) 

(5.5b) 

N-' 
IDU(x,)1 :s e(l + -,,-), d- 0', < X, < d+O'2, 

IDU(x,)1 :s e, otherwise, 

then this solution is unique. This follows by observing that if there are two solutions 
U, and U2 satisfying (5.5), then 

"02(U2 - U,) + b(x, U2)D(U2 - U,) + cDU,(U2 - U,) = 0, 

and so by Lemma 8.4, (U2 - U,) = O. 

Given any discrete solution U of (5.2), (3.5) we can define WL and WR using 

W L = U - VL, Xi :s d, W R = U - VR, Xi 2': d. 

These functions WL : n: n [0, d] --> R and W R : n: n [d, 1] --> R exist, are uniformly 
bounded, and satisfy the following system of finite difference equations: 

(5.6a) (,,02 + (b, (WL) + cVL)D- + cD-VL)(WL) = 0, Xi E n;' n n-, 
(5.6b) (,,02 + (bo(WR) + cVR)D+ + CD+VR)(WR) = 0, Xi E n;' n n+, 
(5.6c) WL(O) = 0, W R(l) = 0, 

(5.6d) WR(d) + VR(d) = WL(d) + VL(d), 

(5.6e) D+WR(d) + D+VR(d) = D-WL(d) + D-VL(d). 

6. ERROR ANALYSIS 

ill the next theorem, we show that the discrete layer functions are small (in a 
discrete sense) exterior to the interior layer region. 

Theorem 6.1. When 0', = ~~ InN and 0'2 = ~ InN, we have that 

IWL(Xi)l:s eN-', Xi:S d-O',; IWR(x,)I:s eN-', Xi 2': d+O'2, 

where W L and W R are the solutions of the problems defined in (5.6). 

Proof. Consider the case of Xi :s d. Let 

i lJ,h; . 
B(xi)=IIj~,(l+2€)J, hi=xi-xi_,. 

Then 
+ 6, (6'hi) _ 6, D B(Xi) = 2" B(Xi), 1 + 2€ D B(x;) = 2" B(Xi), 

and 

(1 + 6,h,) 02B(Xi) = 6? (2- h~+') B(Xi). 
2" 4,,2 hi 

Licensed to Kent Sf Univ, Kent. Prepared on Men Jul 818:49:12 EDT 2013 for download from IP 131.123.1.227. 

License or copyright restrictions may apply to redistribution; see hHp:/Iwww.ams.orgljoumal-tenns-of-use 
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Hence 

(1 + BbZ;) (e02 +b,(U)D- +CD-VL) B(x,) 

< ~ (0, + b,(U) + ~(cD-VL)(l + B;:;)) B(x,) < O. 

Then 
B(x,) 

IIW(Xi)11 :0: qW(dJll B(d)' Xi:O: d. 

Thus, for X, :0: d - <7" 

( 0 h)-Nt. 
IIW(Xi)11 :0: C 1 + ~e ' h = 4<7, 

N' 

119 

Then, if <7, = ~: InN, we have that IWLI :0: CN-', X, :0: d - <7, IWRI:O: 
CN-',x,2':d+<72' D 

Thus, when <7, = ~ InN, we have that 

(6.1a) IWL(x,) - w.(xi)1 :0: IWL(x,)1 + IW.(Xi)1 :0: CN-' + Ce-B,a,/. 

:0: CN-" Xi:O: d - <7,. 

Similarly, for <72 = ~: InN, we obtain 

(6.1b) 

These bounds and the bounds given in Lenuna 5.4 together imply that the numerical 
approximations are essentially first order convergent at the mesh points outside the 
interior layer region (d-<72, d+(72). To obtain an error estimate at the mesh points 
in the interior layer region, we assume the following implicit restriction on the data. 

Assumption 2. Assume that the problem data for problem (1.1) are such that 

(6.2) b"(x" U.(x,)) - 4ecu~(x;) > 0, X, oj d. 

As in Remark 3.4, from the bounds in Theorem 5.7, we have the strict inequality 
Ib(x" U.)I > 0 > O. Hence, assumption (6.2) can be satisfied for certain problem 
data. 

Theorem 6.2. Assume that N is sufficiently large and e is sufficiently small, inde­
pendently of each other. Assume further that (3.5) and (6.2) hold. The continuous 
solution u. of problem (1.1) and any set of discrete solutions U. of (5.2) satisfy the 
following asymptotic error bound 

IIU. - u.lll1N :0: CN-'(lnN)2, , 
where C is a constant independent of Nand e. 

Proof. Consider first the case of <7, = ~: in N and <72 = ~ In N. By Lenuna 
5.4 and (6.1), the result is valid for mesh points outside the interior layer region 
(d - <7" d + (72)' Hence 

(6.3) IU.(d-<7,)-u.(d-<7,)I:o: CN-' and IU.(d+<72)-U.(d+<72)I:o: CN-'. 
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On the other hand, in the layer region (d - a" d) U (d, d + a2), we have that 

e02(Ue - Ue) + b(Xi, Ue)D(ue - Ue) 

= e(02Ue - u~) + b(Xi, Ue)Due - b(Xi, Ue)U~ 

= e(02Ue - u~) + (b(Xi, Ue) - b(Xi, ue))u~ + b(Xi, Ue)(Due - u~) 

= e(02Ue - u~) + (c(Ue - ue))u~ + b(Xi, Ue)(Due - u~). 

We introduce the linear difference operator 

MfjZ := (eo2+b(Xi,Ue)D+cu~)Z, xdd, 

Mfj Z(d) := (D+ Z - D- Z)(d). 

At the mesh point Xi = d, [u~l = [DUel = 0, and so 

I(D+ - D-)(Ue - ue)1 I(D- - D+)(ue) + Iu~ll 
~ Iu~(d) - D+ue(d)1 + Iu~(d) - D-ue(d)1 

~ Chllu~II(.,_".<+,), 

where h = ~ and a = maxi a" a2} is the fine mesh size. Hence, using Ue = Ve + We 
and the bounds in Lemma 4.2, 

Mfj(u-U) e(02Ue-u~)+b(Xi,Ue)(Due-u~), xi#d, 

IMfj(u-U)(Xi)1 ~ Ch(1+:2e-";'NIN/2-i l ), XiE(d-a"d+a2). 

Note that 

_.,.N (1 4InN)-' e N < +--- N 

and hence, we have a truncation error bound of the form 

IMfj (u - U)(xi)1 ~ Ch(l + :2 (1 + 4~N )-IN/2-il), Xi E (d - a" d + a2). 

The finite difference operator Mfj satisfies a discrete comparison principle (see 
Lemma 8.4 in the appendix), provided that (6.2) is assumed. Consider the discrete 
barrier function 

Xi E n~ n (d - a" d], 

Xi E fW n (d,d+a2)' 

Form the product A(Xi)W(Xi), where Ib(U) I > 9 = min{9" 92 }, and we define 

{ 

(1 + lltfu)i-N/2 X· E nN n (d - a, d) 
2e '" e , , 

A(Xi) = 

(1 + e~Z')N/2-i Xi E n~ n (d,d+a2)' 

Then 

Mfj (AW)(Xi) = { 

Xi E fW n (d,d+a2) 
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where, for N sufficiently large, and using the strict inequality Ib(x" U)I > 6, 

ii 
6?h, 

b,(U) + 6, + To 

< btu) + 6, + CN-' inN < 0, x, E n~ n (d- CT"d), 
62ho 

x, E n: n (d,d+CT2), a bo(U) - 62 - _2_ > 0 
4" ' 

b 6? 6,b,(U) '(1 6,h,) 
>'(Xi-') 4" + 2" + cu. +~ 

< - ccu' - -.l + CN-' inN < 0 1 (6
2 

) 
f: E 4 J 

Xi En:n(d-CT"d), 

b 6~ 62bo(U) , (1 62h) 
>.(x<+,) 4" - 2" + cu. + 2e 

< - ccu' - ~ + CN-' inN < 0 1 (6
2 

) 
f: E 4 J 

Xi En: n (d,d+CT2). 

Also, 

and 52w(x,) = 0, X, '" d. Hence, for Xi '" d, 

Noting that 6,h, = 62h2, we have the following bound at the point of discontinuity 
Xi =d, 

Mfj (>.W)=>.(d - h) (D+W(d)-D-W(d)- 6, ~ 62W(d) ) ~C:' ~ IMfj (u - U)(d)I. 

Applying the discrete comparison principle to 'II ± (U. - u.) over the interval 
[d - CT" d + CT2], we get 

-1 N- 1u2 
-1 2 

IU.(Xi) - u.(xi)I:O; CN +C--2 -:0; CN (InN). 
" 

We complete the proof by considering the case where at least one of the two transi­
tion points CT" CT2 takes the value ~ or '.d. In all such cases c' :0; ClnN. Apply 
the above argument across the entire domain nN to complete the proof. D 

Remark 6.3. Note that (6.2) is a restriction on the problem class. In this remark, 
we show that this restriction is satisfied if " is sufficiently small and the data is 
further restricted. We first examine the restrictions placed on the data when we 
require that 

b"(X,u.) - 4"cu~ > 0, 'Ix E (0,1). 

Note that u. = v. + w. and so for" sufficently small, u~ > 0, X E (0, 1); u~(x) > 
O,x < d, u~(x) < O,x > d. Thus 

(b2(x, u.) - 4"cu~)(x) ~ max{(l - CU.(d))2, (1 + CU.(d))2} - 4"cu~(d), 'Ix E (0,1). 
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Note also that 

gu'ld) - £u~(0) l (-0, + (1 - cu. (t))u.(t)) dt 

1 
-do, + 2c (2cu.(d) - C2U~(d) - 2cu.(0) + C2U~(0)) 

1 ( 2 2) -dOd 2c (1 - cu.(O)) - (1- cu.(d)) , 

and so 

(1 - CU.(d))2 - 4£cu~(d) > 4co,d + 3(1 - CU.(d))2 - 2(1 - CU.(0))2. 

If -1/ < cu.(O) < cu.(I) < 1/, then 1-1/ < 1- cu. (1) < 1- cu.(d) < 1- cu.(O) < 
1 +1/. This means that (1- CU.(d))2 - 4£cu~(d) > 4co,d+ (1-1/)2 - 81/ = 4co,d + 
1 - 101/ + 1/2. Hence, we require the data to be such that 

4cmax{O,d, 02(1 - d)} + 1 - 101/ + 1/2 > 0, 

where -1/ < cu.(O) < cu.(I) < 1/ and o,d < -u.(O) and 02(1 - d) < u.(I). For 
example, if 1/ = 0.1, c = 1, o,d < -u.(O) < 0.1 and 02(1 - d) < u.(I) < 0.1, then 
the data constraints (3.5) and (6.2) in Theorem 6.2 are both satisfied. 

7. NUMERICAL RESULTS 

To solve the nonlinear difference scheme (5.2) we use the continuation method 
described in [8]. Table 1 displays the computed rates of convergence ~ and the 
uniform rates of convergence rI', using the double mesh principle (see [4] for details 
on how these quantities are calculated), when the numerical method (5.2) is applied 
to the problem (1.1) with u(O) = -0.5,0, = 0.8, u(l) = 0.7,02 = 1.2, d = 0.5, c = 1. 
Note that the conditions in (3.5) are satisfied for this data. The computed rates 
of convergence are in line with the theoretical rates of convergence established in 
Theorem 6.2. 

TABLE 1. Table of computed orders p: and computed £-uniform 
orders pN for the numerical method (5.2) applied to problem (1.1) 
with u(O) = -0.5,0, = 0.8, u(l) = 0.7,02 = 1.2, d = 0.5, c = 1. 

Number of futervals N 
£ 32 64 128 256 512 1024 

2 -1 0.96 0.98 0.99 0.99 1.00 1.00 
2-2 0.92 0.96 0.98 0.99 0.99 1.00 
2-3 0.88 0.94 0.96 0.98 0.99 0.99 
2-' 0.77 0.86 0.93 0.96 0.98 0.99 
2-5 0.62 0.78 0.86 0.93 0.96 0.98 
2-6 -0.25 0.63 0.78 0.86 0.93 0.96 
2-8 0.24 0.28 0.48 0.58 0.75 0.77 
2-'0 0.26 0.29 0.48 0.59 0.76 0.77 
2-'2 0.27 0.29 0.48 0.59 0.76 0.77 

2-23 0.27 0.29 0.48 0.59 0.76 0.77 

1>" 0.29 0.63 0.63 0.59 0.76 0.75 
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8. ApPENDIX ON DISCRETE COMPARlSON PRINCIPLES 

Consider the following linear problem: 

L,u := eu" + pu' + qu = f, x E (0,1), u(O) = uo, u(l) = U" 

p ?: '" > 0, q s, /3, ",2 - 4E/3 > o. 
Lemma 8.1. Ifw(O) S, 0, w(l) S, 0, L,w ?: 0, then w S, 0, x E [0,1]. 

123 

Proof. If /3 s, 0, then the standard proof by contradiction argument applies. For 
/3 > 0, use the transfonnation w = e-fi"v. D 

Consider the corresponding discrete problem on an arbitrary mesh flN, 

Lfu:= e{j2U + pD+U + qU = f, Xi E flN, U(O) = Uij, U(l) = Ul, P?: a > O. 

If q S, 0, then the standard discrete comparison principle holds for Lf'. Below 
we extend this comparison principle to the case of q > O. As in the proof of the 
continuous operator, consider the transfonnation 

W(X;) = A(Xi)V(Xi), 

where A will be specified below. For any such mesh function A, 

D+(A(Xi)V(Xi)) A(Xi+1)D+V(Xi) + V(xi)D+ A(X;), 

D-(A(Xi)V(Xi)) 

02(A(Xi)V(Xi)) 

A(Xi_,)D-V(Xi) + V(xi)D- A(Xi), 

V(Xi)02(A(Xi)) + ~ (A(xi+l)D+V(Xi) - A(Xi_l)D-V(Xi)) , 

where h; = (h; + hi+1)/2. Hence 

02 (A(Xi)V(Xi)) = V(X;)02(A(Xi))+ (A(Xi+1) ~ A(Xi-l)) D+V(Xi)+A(Xi_l)02(V(Xi))' 

Then, for W(Xi) = A(X,)V(Xi) we have 

(e02W +pD+W +qW)(x,) = [eA(Xi_l)02V +A(Xi+1)fiD+V +iiV] (x;) , 

where 

, 10 (( Ph,) A(X'_l) )' 2( ()) +( ()) () p = h; 1 + € - A(Xi+1) < , q = eO A Xi + pD A Xi + qA Xi . 

In the following three lemmas, we assume that h; S, CN-lln N and that 10 is 
sufficiently small (independently of N) and N is sufficiently large (independently 
of e). 

Lemma 8.2. Assume that p ?: '" > O. Under anyone of the following three 
assumptions: 

(1) q(Xi) S, C2, 'lXi, 
(2) p> '" > 0, ",2-4eq > 0 and flN is a uniform mesh with hie S, CN-llnN, 
(3) flN = fl: is a piecewise uniform mesh which uses a uniform mesh in each 

of the subintervals [0, <7 and [<7,1] (with a fine mesh step h S, CEN-llnN 
and a coarse mesh step H S, CN-llnN) and 

q(x;) S, C, (1 + (EN)-l), Xi < <7, q(Xi) S, C2, Xi ?: <7; 
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then for any mesh function W, ifW(O)::; 0, W(l)::; 0, Lf'W 2: 0, then W(Xi)::; 
0, 'Ix, E flN. 

Proof. We employ functions of the form >.(x,) = II)=l (1 + Ojhj )-l, which satisfy 

D+ >.(x,) = -OH1>'(XH1), D->'(Xi) = -O,>.(x,), 

D+ >.(x;) - D->.(x,) = ((0, - Oi+1) + O'+10ihi+1)>'(Xi+1), 

phi >.(x,_,) hi ( 0 ( )) 
1 + - - >.( ) = - p - h- hiOi + hi+10i+1 + h;OihH10H1 , 

C Xi+l C i 

Ii(x,) = >'(x'+1) [(1 + OH1 h'+1) (i, 0, + q(x,)) - OH1 (ii + p(xi)) ] . 

ill each of the three cases, we choose the OJ so that p 2: 0, Ii < ° and then the 
normal proof by contradiction argument can be applied. Assume W, > ° and let 
V; = max V; > 0, then D+V; ::; 0, D-V; 2: 0, 82V; ::; 0, LNWj ::; 0. 

Case 1. Take, OJ = 0 = 2C~+1. Then if 0 is sufficiently small (independently of 
N) and N is sufficiently large (independently of 0), 

ph; >.(x 1) h; 
1 + - - >.( ,- ) 2: - (a - 200(1+ Oh)) 2: 0, h = min{h;, hH 1}, 

e xi+l e 

Ii ::; >'(Xi+1) (2002 + q - aO + qOhi+1) < 0. 

Case 2. Take OJ = ~. Then, if N is sufficiently large (independently of 0), 

1 ph, >'(Xi-1) _ h ( (1 ah)) ° +-- -- p-a +- > 
o >'(x'+1) 0 20 -, 

using the strict inequality p > a and 

Ii ::; >'(XHl) (002 + q - aO + qOh) < 0, 

using the strict inequality 40q < a 2 • 

Case 3. If oN 2: 1, then follow the argument in Case 1. Otherwise, take 

0, = o'lv, i::; N/2, 0, = (2,i > N/2, 

where 
r _ 20, + 1 
,,- a' a(2)q+(,. 

ill the layer region, when i < N/2 and h::; 00N-1 inN, 

1 + ph; _ >'(Xi-1) 2: !!. (p _ (, (2 + (lh)) 2: 0, for any ( 
o >'(XH,) 0 N No 1, 

Ii 1 ( ) (, ( (1) >.( ) = -N qoN - p(, + -N qh + N < 0, 
~+1 e e 

using qoN ::; O,(oN + 1) ::; 20, . Outside the layer region, when i > N/2, for 0 

sufficiently small, 

1 + ph, _ >'(X'-l) = H (p _ 0(2(2 + (2H)) 2: ° 
o >'(x'+1) 0 

and 
Ii >.( ) ::; q - a(2 + (2(20(2 + qH) < 0. 

Xi+l 
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At the transition point, when i = N 12 and N is sufficiently large, 

ph; >'(Xi-') h 
1 + - - >.( ) = - (p - (h(, + E:NH(2 + h(,(2H)) 2: 0, 

€ Xi+l € 

>.f(X') ) = (1 + (2H)(q(x,) + (,) - (2('" + E:N) < 0, 
Xi+l 

using the strict inequality "'(2 > q + (,. 
ill the CWle of a negative convective coefficient p < 0, we employ the operator 

L!jU:= E:02U + pD-U + QUo 

Lemma 8.3. Assume that p ::; -'" < 0 and anyone of the following: 

(1) q(Xi)::; C2, 'lxi, 

o 

(2) p < -'" < 0, ",2 - 4eq > 0 and nN is a uniform mesh with hiE: ::; 
CN-' inN, 

(3) nN = n: is a piecewise uniform mesh and 

q(Xi)::; C,(1 + (E:N)-'),xi > 1- CT, q(Xi)::; C2,Xi::; 1- CT; 

then for any mesh function W, ifW(O)::; 0, W(I)::; 0, Lfw 2: 0, then W(Xi)::; 
0, 'Ix, E nN. 

Proof. The proof is analogous to the CWle of p > o. As before, if W(Xi) 
>'(Xi)V(X;), then 

(e02W + pD-W + qW)(Xi) = [e>'(XHl)02V + p>'(xi_,)D-V + qv 1 (Xi) , 

where 

_ E: (>'(X'+1) ( ph,)) _ 2( ()) _( ()) () p = hi >'(Xi-') - 1 - -;: , q = eO >. Xi + pD >. Xi + q>. Xi . 

Consider functions of the fonn >.(x,) = II}=, (1 + Ojhj ), which satisfy 

The proof is analogous to the previous proof. o 
ill the CWle of a discontinuous convective coefficient p < -'" < 0, X < d, and 

p > '" > 0, X > d we use the upwind finite difference operator 

L!{ U := E:02U + pDU + QUo 

Lemma 8.4. Under anyone of the following assumptions: 

(1) q(Xi)::; C2, 'lXi, 
(2) ",2 - 4eq > 0 and nN is a uniform mesh with hiE:::; CN-' InN, 
(3) nN = n: is a piecewise uniform mesh, and 

q(Xi) ::; C,(1 + (eN)-'), d - CT < Xi < d + CT, q(x;)::; C2, otherwise; 
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then for any mesh function W, if W(O) :::; 0, W(l) :::; 0, Lfw 2: 0, D+W(d) 2: 
D-W(d), we have W(x,):::; 0, 'Ix, E nN. 

Proof. Use functiollB of the form: 

>'(Xi) = IIj=l(1 +Ojhj),i:::; N/2, >'(Xi) = >'(d)IIj=,_N/2(1 + Ojhj)-"i > N/2. 

ill all three cases, using the choices from the previous two lemmas, we get >'(XN/2-1) 
= >'(XN/2+1)' Then 

2 ( 2 0) 8 W(d) = >'(XN/2-1) 8 V(d) - 2,. V(d) . 

If W > ° and mBJ<V = V(d) > 0, then 8"W(d) < 0, which is a contradiction. D 

REFERENCES 

[1] S. R. Bern:field and V. Lakshmikantham, An introduction to Nonlinear Boundary Value 
Problems. Academic Pres" New York, (1974). MR0445048 (56:3393) 

[2] K. W. Chang and F. A. Howes, Nonlinear Singular Perturbation Phenomena, Springer­
Verlag, New York, (1984). MR764395 (86e:34090) 

[3] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. 0' Rlordanand G. 1. Shishkin, Global maximum 
norm parameter-uniform numerical method for a singularly perturbed convection-diffusion 
problem with discontinuous convection coefficient, Mathematics and Computer Modelling, 
40, 2004, 1375-1392. MR2127720 (2005m:65146) 

[4] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. Q'Riordan and G. I. Shishkin, Rob'U8t Compv.­
tational Techniques for Boundary Layers, Chapman and Hall/ORC, Boca Raton, FL (2000). 
MR1750671 (2001c:65003) 

[5] P. A. Farrell, J. J. H. Miller, E. O'Riordan and G. 1. Shishkin, On the non-existence of e­
Wliform finite difference methods on uniform meshes for semilinear two-point boundary value 
problem" Math. Comp., 67, (222), 1998, 603-{l17. MR1451321 (98g:65072) 

[6] P. A. Farrell, J. J. H. Miller, E. O'Riordan and G. 1. Shishkin, A uniformly convergent finite 
difference scheme for a singularly perturbed semilinear equation, SIAM J. Num. Anal., 33, 
(3),1996,1135-1149. MR1393906 (97b:65086) 

[7] P. A. Farrell, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Parameter-uniform fitted mesh 
method for quasilinear differential equation with boundary layers, Computational Methods 
in Applied Mathematics, Vol. 1, No.2, 2001, 154-172. MR1854309 (2oo2f:65102) 

[8] P. A. Farrell, E. 0' Riordan and G. I. Shishkin, A class of singularly perturbed semilinear 
differential equations with interior layers, Math. Comp., 74, 2005, 1759-1776. MR2164095 
(20061:65067) 

[9] N. Kopteva and T. Lin6, Uniform second order pointwise convergence of a central difference 
approximation for a quasilinear convection-diffusion problem, J. Comput. Appl. Math., 137 , 
no. 2, 2001, 257-267. MR1865231 (2002h:65109) 

[10] T. LinB, H.-G. Roos and R. Vulanovic Uniform pointwise convergence on Shishkin-type 
meshes for quasilinear convection-diffusion problems, SIAM J. Numer. Anal., 38(3), 2000, 
897-912. MR1781208 (2001h:65082) 

[11] J. Lorenz, Nonlinear singular perturbation problems and the Engquist-Osher difference 
scheme, Report 8115, University of Ni;megen , 1981. 

[12] J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Fitted numerical methods for singular 
perturbation problems, World Scientific, (Singapore), (1996). MR1439750 (98c:65002) 

[13] H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Dif­
ferential Equations. Convection-Diffusion and Flow Problems, Springer-Verlag, New York, 
(1996). MR1477665 (99a:65134) 

[14] G. 1. Shishkin, Discrete approximation of singularly perturbed elliptic and parabolic equations, 
Russian Academy of Sciences, Ural section, Ekaterinburg, (1992). (in Russian) 

[15] R. Vulanovic, A priori meshes for singularly perturbed quasilinear two-point bOWldary value 
problem" IMA J. Numer. Anal., 21, 2001, 349-366. MR1812279 (2002i:65073) 

Licensed to Kent St Univ, Kent. Prepared on Mon Jul 818:49:12 EDT 2013 for download from IP 131.123.1.227. 

License or copyright restrictions may apply to redistribution; see hHp:/Iwww.ams.orgljoumal-tenns-of-use 



QUASILINEAR PROBLEM WITH INTERIOR LAYERS 

DEPARTMENT OF COMPUTER SCIENCE, KENT STATE UNIVERSITY, KENT, Qmo 44242 

E-mail address: farrelllllcs .kent .edu 

SCHOOL OF MATHEMATICAL SCIENCES, DUBLIN CITY UNIVERSITY, DUBLIN 9, IRELAND 

E-mail address: eugene. oriordanilldcu. ie 

127 

INSTITUTE OF MATHEMATICS AND MECHANICS, RUSSIAN ACADEMY OF SCIENCES, EKATERlN­

BURG, RUSSlA 

E-mail address:shishkinGimm.uran.ru 

Licensed to Kent St Univ, Kent. Prepared on Mon Jul 818:49:12 EDT 2013 for download from IP 131.123.1.227. 

License or copyright restrictions may apply to redistribution; see hHp:/Iwww.ams.orgljoumal-tenns-of-use 


	Kent State University
	Digital Commons @ Kent State University Libraries
	1-2009

	A Class of Singularly Perturbed Quasilinear Differential Equations with Interior Layers
	Paul A. Farrell
	Eugene O'Riordan
	Grigori I. Shishkin
	Recommended Citation


	Print

