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5. Numerical results. In this section numerical results are given for the following one
dimensional examples of the semilinear problem (2.1): 

(5.1) 
d' 

E' - , U(X) - g(x, u(x)) = 0, x e (0, I) , 
dx 

u(O) = A, u( l ) = B , 

where either 

(5.2) g(x , u) = u _ u3 

or 

(5.3) 

Various choices of A and B in the boundary conditions are examined. 
The central difference operator 

L"UN :: e2o;uN - g(x, UN) = 0, UN{O) = u{O), UN(l ) = u ( I ), 

on a special piecewise-unifonn mesh Wi is used. The mesh Wi is constructed by dividing the 
interval into three subintervals, [0, a] , [a, 1 - al , [1 - a, I] , where 

a �~� min{0.25,ElnN} . 

A unifonn mesh is used on each subinterval, taking N /4, N /2, and N /4 points in the respective 
intervals. 

The nonlinear finite difference method {L", wi J is lineari zed using the continuation 
method (with the parameter p = 1) given in §4. That is. 

�L�~�U �N� :: e2o;uN{X , tj) - g(x, UN{X , tj_ I» - D,+UN(X, tj) = O. j = 1, .. . , K , 

UN(O, tj) = u (O), UN(l, tj) = u( 1) for all }, 

Various starting values Uillil{X) are chosen. The number of iterations K and the choice of 
unifonn time step h, = Ij - tj_ 1 are discussed below. With the definition 

(5.4) e(j):: max IUN(Xj , Ij ) - UN{Xj , Ij_ I )l! h, . for j = 1, 2, ... , K , 
�l�~�i�~�N� 

the time step h, is chosen suffi ciently small so that 

(5.5) e(j) ::: e(j - 1), for 1 < j :=: K 

and the number of iterations K is chosen such that 

(5.6) e(K) :5 TOL, 

where TOL is some prescribed small tolerance. 
The numerical solution is obtained as follows: 
Start with h, = 0.0625. If, at some value of j , (5.5) is not sati sfied then halve the time step 

until (5.5) is satisfied. Continue the iterations until either (5.6) is satisfi ed or until K = 90. If 
(5.6) is not satisfi ed, then repeat the entire process starting with h, = 0.03125. 
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The resulting values of UN (X, K) are taken as approximations to the solution of the 
continuous problem (5.1). 

The problem is solved on a sequence of meshes, with N = 8, 16,32,64, 128,256,5 12, 
1024 and for e = 2-11

, n = 1,2, ... , Jred, where Jr~d is chosen so that e is a value at which 
the rate of convergence stabilizes. which normally occurs when, to machine accuracy, we are 
solving the reduced problem. 

The errors Iu H(X; , K) - U (x;) 1 are approximated on each mesh for successive values of 
e by ee, N(i) = IUN(X" K) - u 1 (x;, K)I. where u' (x , K) is defined by linear interpolation on 
each subinterval [Yj_l, Yj] by 

I • • • x-Yj_ 1 
U (x , K) = U (Yj_ l , K) + (u (Yj, K) - u (Yj _ l , K» , 1 ~ j ~ 1024, 

Yj - Yj- I 

where the nodal values {u· (Yj, K ) } J~04 are obtained from the solution of the finite difference 

method {L~, wr x WI} with N = 1024. For each e and each N the maximum notlal error is 
approximated by 

For each N, the e·unifonn maximum nodal error is approximated by 

In what follows all calculations were carried out in double--precision FORTRAN 77 on a 
Hewlett· Packard/Apollo 730. 

A numerical method for solving (5.1) is e·unifonn of order p on the mesh ON = {Xi> j = 
0, 1, ... , N) if 

sup max lu(x) - UN(X, K)I ::: eN-p, 
0<£:::; 1 nN 

where u is the solution of (5.1), UN is the numerical approximation to u, and C and p > 0 
are independent of e and N. An approximation to p, the e·unifonn rate of convergence, 
was detennined using a variation of the double·mesh method described in [5]. This involves 
calculating the double·mesh error 

D£.N = ~x IUN(X;, K) - U~N(X" K)1. 

which is the difference between the values of the solution on a mesh of N points and the 
interpolated value for the solution, at the same point, on a mesh of 2N points. For each value 
of N the quantities 

are computed. The values of PN are the approximations to p. 
Tables 5.1-5.6 and 5.8 present numerical results for centered differences on the special 

mesh G! for the problem (5.1), (5.2). Table 5.1 gives the errors E B,N and EN for problem 
(5.1), (5.2) with boundary conditions u(O) = I , u(l) = I and initial guess U;lIiI = O. 
Tables 5.2-5.6 present summary results for problem (5.1), (5.2), for various boundary values 
and initial guesses. In all of these examples, it is clear that the central difference scheme 
on the special mesh GN yields an e·unifonn method. It should be noted that, in the case of 
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TABLES.l 
Errors E~.N and EN for problem (5.1), (5.2). 

, , 
, 

1/. .000037 .000634 .000057 . ()()()() 14 .1XlOOll3 .1XlOOll1 .000000 

1/' .006885 .001755 .1100440 .000110 .000027 .1XlOOll6 .1XlOOll1 
Ifl6 .006907 .002070 .000444 .000111 .000027 .1XlOOll7 .1XlOOll1 
1/32 .011231 .003309 .000878 .000219 .000054 .000013 .1XlOOll3 
1/64 .012372 .006810 .001777 .000446 .000111 .000026 .1XlOOll5 

1/ 128 .016902 .011381 .003402 .000899 .000223 .000053 .000011 
1/256 .033105 .01 1972 .005 121 .001780 .000443 .000106 .000021 
1,5 12 .056008 .012978 .005182 .001950 .000673 .000226 .000043 

1/ 1024 .077146 .02 1205 .005260 .001952 .000677 .000230 .000081 
1/2048 .094695 .031616 .007446 JXH97 I .000679 .000230 .000081 
1/4096 .108414 .04 1192 .012061 .002426 .000682 .000230 JJ()(X)81 

1/8192 .118767 .049207 .016901 .004247 .000736 .000231 .000081 
1/ 16384 .126412 .055532 .021361 .006463 .001373 .000231 .000081 
1/32768 .131978 .060343 .025123 .008769 .002272 .000400 .000082 
1/65536 .135994 .063915 .028117 .010900 .003350 .000728 .000108 

1/131072 .138874 .066527 .030410 .012707 .1lO4469 .001170 .000202 
1/262144 .140930 .068418 .032 123 .014153 .005503 .001694 .000348 
1/524288 .142394 .069775 .033379 .015264 .006380 .002232 .000544 

1/1048576 .143433 .070745 .034289 .016095 .007080 .002723 .000767 
1/2097152 .144171 .071436 .034943 .016704 .007614 .003 131 .00:>985 
1/ 4194304 .144693 .071926 .035410 .017143 .008010 .003450 .001173 
1/8388608 .145062 .072274 .035742 .017458 .008297 .003688 .001321 

1/167772 16 .145323 .0725 19 .035977 .017681 .008503 .003861 .001433 

TABLE 5.2 
Maximum errors EN and computed rates oj convergence PN. 

Boundary conditions: u(O) _ 1 . u(l) _ 1 
Initial guess : Uinil =0 

N , 16 32 64 12' 256 
EN .145508 .072693 .036143 .017840 0.08649 .003985 

PN 0.94 1.02 1.02 1.03 1.04 1.09 

TABLE 5.3 
Maximum errors EN and computed rates ofcol1vergel1ce PN. 

Boundary conditions: u(O) I . u(1) I 
Initial guess : U/"iI = .5 

N , 16 32 64 12' 256 
EN .145674 .072779 .036186 .017861 .008660 .003990 

PN .94 1.02 1.02 1.03 1.04 1.09 

the numerical examples presented here. g(u , x) does not satisfy the condition (2.2), and thus 
the method may in practice be f:.uniformly convergent even in cases where this condition 
is not satisfied. Moreover, the computed rate of e~uniform convergence is approximately I, 
independent of the choice of the initial guess and of the boundary conditions. This indicates 
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TABLE 504 
Maximum errors EN and computed rates o/convergence PN. 

Boundary conditions: u(O) .5. u(l ) .7 
Initial guess : U;n;, = 0 

N 8 16 32 64 128 256 
EN .093222 .046517 .023123 .011413 .005533 .002549 

PN .97 1.03 1.02 1.03 1.04 1.'" 

TABLE 5.5 
Maximum errors EN and computed rateso/convergence PN' 

Boundary conditions: ufO) _. 5 . u(l) _.7 

Initial guess : Ulnil = .5 

N 8 16 32 64 128 256 

EN .093268 .046541 .023135 .011419 .005536 .002551 

PN .97 1.03 1.02 1.03 1.04 1.'" 

T ABLE 5.6 
Maximum errors EN and computed raleS o/convergence PN. 

Boundary conditions: ufO) .5. u( l ) .7 
Initial guess : Ujn;, := u(O) + (u (l ) - u(O»x 

N 8 16 32 64 128 256 

EN .093257 .046535 .023132 .01141 7 .005536 .002550 

PN .97 1.03 1.02 1.03 1.04 1.'" 

T ABLE 5.7 
Theoretical rales 0/ convergence PN from (4.10). 

N 8 16 32 64 128 256 

PN 04150 .5850 .6781 .7370 7776 .8074 

that the theoretical result given in (4.10) may be a conservative estimate of the rate of €-unifonn 
convergence. To verify this further we give in Table 5.7 below the local theoretical rates of 
€-unifonn convergence, corresponding to those in Tables 5.2- 5.6. It is clear that the actual 
computed rates in Tables 5.2- 5.6 are substantially better in all cases than the theoretical rates. 

We should also remark that, as shown in [7, pp. 124- 1271. there are multiple solulions 
to this problem for the boundary conditions, u(O) = I , u(l) = 1. The stable solution 
has boundary layers at both end-points and, for sufficiently small €, approaches the reduced 
solution u (x) == 0 in the interior. On the other hand, it is clear that u (x ) == 1 is also a solution, 
in this case an unstable one. We remark that for all the initial guesses discussed above. the 
numerical solutions converge to the stable solution, and furthennore the computed rate of 
€-unifonn convergence obtained is the same. Wilh the initial guess Uinil = 1, however, it 
converges to the unstable solution after one iteration, as would be expected. On the other 
hand, it is of some interest that for initial guesses as close to I as U jnit = .98, the solutions 
converge to the stable solution, with essentially the same €-unifonn rate as the above examples. 
The results for this case are given in Table 5.8. 

Tables 5.9- 5.13 give the corresponding numerical results for the problem (5.1), (5.3). 
Again, it may be observed that for all the initial guesses discussed. convergence to the true 
solution occurs and the computed rate of e-unifonn convergence of the scheme is essentially 
the same, independent of the initial guess. 
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TAaU; 5.8 
Maxim~m errors EN and comp~ted rates 0/ corrvtrgellce PN. 

Boundary conditions: u(O) 1 • u( l ) = 1 
Initial guess . u 98 ;11;' -

N , ,. 32 64 '2' 256 
EN .145661 .072n l .036182 .017859 .008659 .003989 

PH .94 1.02 1.02 1.03 1.04 1.09 

TABU; 5.9 
Maxim~m errors EN and comp~ted rates 0/ convergence PN. 

Boundary conditions: w(O) - I • w( l ) _ I 

Initial guess ; w/,,/, =0 

N , ,. 32 64 ' 2' 2" 
EN .097937 .048050 .023691 .0 11648 .005637 .002595 

PH 1.06 1.08 1.04 1.04 1.05 1.09 

TABU! 5.10 

Maxim~m errors EN and computed rates 0/ convtrgellce PN. 

Boundary conditions: u(O) _ I . u( l ) _ I 

Initial guess' u - 5 /,,1,-· 

N , ,. 32 64 '2' 256 
EH .097873 .048014 .023672 .01 1638 .005632 .002593 

PH 1.06 1.08 1.04 1.04 1.05 1.09 

TABU! 5.11 
Maximum errors EN and computed raleso/convtrgellce PH. 

T ABU! 5.12 
Maximum errors EN and computed ratts o/convergence PN. 

Boundary conditions: u(O) .5. u( l ) .7 
Initial guess . u - 5 ;,,/,-. 

N , ,. 32 64 '2' 25. 
EN .073034 .035977 .017774 .008747 .004235 .001950 

PH 1.05 1.07 1.04 1.03 1.05 1.09 

TABU; 5.13 
Maxim~m errors EN and computed rates 0/ convergellce PN' 

Boundary conditions: u(O) .5. u(1) .7 

Initial guess : Wj"j , - w(O) + (u( l ) - u(O»x 

N , ,. 32 64 '2, 256 
EN .073063 .035993 .017782 .008751 .004237 .001951 

P" 1.05 1.07 1.04 1.03 1.05 1.09 
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