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The resulting values of uy(x, K) are taken as approximations to the solution of the
continuous problem (5.1).
The problem is solved on a sequence of meshes, with N = 8, 16, 32, 64, 128, 256, 512,

1024 and fore = 27", n = 1,2, ..., jrea» Where j,.q is chosen so that ¢ is a value at which
the rate of convergence stabilizes, which normally occurs when, to machine accuracy, we are
solving the reduced problem.

The errors |uy(x;, K) — u(x;)| are approximated on each mesh for successive values of
ebye. (i) = luy(xi, K) —u' (xi, K)|, where u’ (x, K) is defined by linear interpolation on
each subinterval [y;_, y;] by

! — (s "o "o, e i B
u' (x, K) =u (yj-1, K) + (" (yj, K) — u”(yj-1, K))y- »

i j—1

, 1 < j <1024,

where the nodal values {u*(y;, K )}}fo“ are obtained from the solution of the finite difference
method {L!, w} % w,} with N = 1024. For each ¢ and each N the maximum nodal error is
approximated by

Egn = m?xes.N(f)—

For each N, the e-uniform maximum nodal error is approximated by

Ey =max E; y.
&

In what follows all calculations were carried out in double-precision FORTRAN 77 on a
Hewlett-Packard/Apollo 730.

A numerical method for solving (5.1) is e-uniform of order p on the mesh Qy = {x;,i =
0.1, NJE

sup max |u(x) —uy(x,K)| < CN7?,
Q<g<l N

where u is the solution of (5.1), uy is the numerical approximation to u, and C and p > 0
are independent of ¢ and N. An approximation to p, the e-uniform rate of convergence,

was determined using a variation of the double-mesh method described in [5]. This involves
calculating the double-mesh error

D,y = max Juy (xi, K) - uby (i, K,

which is the difference between the values of the solution on a mesh of N points and the
interpolated value for the solution, at the same point, on a mesh of 2N points. For each value
of N the quantities

DN
Dy = max D —1 SEeAv
N 2 e Ny PN 0g; (Dzw)

are computed. The values of py are the approximations to p.

Tables 5.1-5.6 and 5.8 present numerical results for centered differences on the special
mesh G} for the problem (5.1), (5.2). Table 5.1 gives the errors E, y and Ey for problem
(5.1), (5.2) with boundary conditions u(0) = 1, (1) = 1 and initial guess u;,; = 0.
Tables 5.2-5.6 present summary results for problem (5.1), (5.2), for various boundary values
and initial guesses. In all of these examples, it is clear that the central difference scheme
on the special mesh G7, yields an e-uniform method. It should be noted that, in the case of
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TaABLE 5.1
Errors E. iy and Ey for problem (5.1), (5.2).

Boundary conditions: u(0) =1, u(l) =1
Initial guess : Uiniy =0

Number of mesh points N
e 8 16 32 64 128 256 512
1/2 || .000055 | .000013 | .000003 | .000001 | .000000 | .000000 | .000000
1/4 || .000037 | .000634 | .000057 | .000014 | .000003 | .000001 | .000000
1/8 || .006885 | .001755 | .000440 | .000110 | .000027 | .000006 | .000001
1/16 || .006907 | .002070 | .000444 | .000111 | .000027 | .000007 | .000001
1/32 || .011231 | .003309 | .000878 | .000219 | .000054 | .000013 | .000003
1/64 || .012372 | .006810 | .001777 | .000446 | .000111 | .000026 | .000005
1/128 || .016902 | 011381 | .003402 | .000899 | .000223 | .000053 | .000011
1/256 || .033105 | .011972 | .005121 | .001780 | .000443 | .000106 | .000021
1/512 || .056008 | .012978 | .005182 | .001950 | .000673 | .000226 | .000043
1/ 1024 || .077146 | .021205 | .005260 | .001952 | .000677 | .000230 | .000081
1/2048 || .094695 | .031616 | .007446 | .001971 | .000679 | .000230 | .000081
1/4096 || .108414 | .041192 | 012061 | .002426 | .000682 | .000230 | .000081
1/ 8192 || .118767 | .049207 | .016901 | .004247 | .000736 | .000231 | .000081
1/ 16384 [ 126412 | .055532 | .021361 | .006463 | .001373 | .000231 | .000081
1/32768 || .131978 | .060343 | 025123 | .008769 | .002272 | .000409 | .000082
1/ 65536 || .135994 | .063915 | .028117 | .010900 | .003350 | .000728 | .000108
1/ 131072 || .138874 | .066527 | .030410 | .012707 | .004469 | .001170 | .000202
1/262144 || .140930 | .068418 | .032123 | .014153 | .005503 | .001694 | .000348
1/ 524288 || .142394 | 069775 | .033379 | .015264 | .006380 | .002232 | .000544
1/ 1048576 || .143433 | .070745 | .034289 | .016095 | .007080 | .002723 | .000767
1/2097152 || .144171 | .071436 | .034943 | .016704 | 007614 | .003131 | .000985
1/ 4194304 || .144693 | .071926 | .035410 | .017143 | .008010 | .003450 | .001173
1/ 8388608 || .145062 | .072274 | .035742 | .017458 | .008297 | .003688 | .001321
1/ 16777216 || .145323 | 072519 | .035977 | .017681 | .008503 | .003861 | .001433
1/ 33554432 || .145508 | .072693 | .036143 | .017840 | .008649 | .003985 | .001514
Ey || .145508 | 072693 | .036143 | .017840 | .008649 | .003985 | .001514

TABLE 5.2
Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =1, u(l)=1
Initial guess : Winir =0

N 8 16 32 64 128 256

Ey | .145508 | .072693 | .036143 | .017840 | 0.08649 | .003985

PN 0.94 1.02 1.02 1.03 1.04 1.09
TABLE 5.3

Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =1, u(l) =1
Initial guess : Uinit = .5

N 8 16 32 64 128 256
Ey | .145674 | .072779 | .036186 | .017861 | .008660 | .003990
DN 94 1.02 1.02 1.03 1.04 1.09

the numerical examples presented here, g(u, x) does not satisfy the condition (2.2), and thus
the method may in practice be e-uniformly convergent even in cases where this condition
is not satisfied. Moreover, the computed rate of e-uniform convergence is approximately 1,
independent of the choice of the initial guess and of the boundary conditions. This indicates
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TABLE 5.4
Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =.5, u(l)=.7
Initial guess : Uinis =0

N 8 16 32 64 128 256

Ey | 093222 | 046517 | .023123 | .011413 | .005533 | .002549

PN 97 1.03 1.02 1.03 1.04 1.09
TABLE 5.5

Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =.5, u(l) =.7
Initial guess : Uinit = .5

N 8 16 32 64 128 256

Ey | 093268 | .046541 | .023135 | .011419 | .005536 | .002551

PN 97 1.03 1.02 1.03 1.04 1.09
TABLE 5.6

Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =.5, u(l)=.7
Initial guess : Uinit = 1u(0) + (u(1) — u(0))x

N 8 16 32 64 128 256

Exn | 093257 | .046535 | .023132 | .011417 | .005536 | .002550

PN .97 1.03 1.02 1.03 1.04 1.09
TABLE 5.7

Theoretical rates of convergence py from (4.10).

N 8 16 32 64 128 256
PN 4150 .5850 .6781 7370 7776 .8074

that the theoretical result given in (4.10) may be a conservative estimate of the rate of e-uniform
convergence. To verify this further we give in Table 5.7 below the local theoretical rates of
g-uniform convergence, corresponding to those in Tables 5.2-5.6. It is clear that the actual
computed rates in Tables 5.2-5.6 are substantially better in all cases than the theoretical rates.

We should also remark that, as shown in [7, pp. 124-127], there are multiple solutions
to this problem for the boundary conditions, u(0) = 1, u(l) = 1. The stable solution
has boundary layers at both end-points and, for sufficiently small ¢, approaches the reduced
solution u(x) = 0 in the interior. On the other hand, it is clear that u(x) = 1 is also a solution,
in this case an unstable one. We remark that for all the initial guesses discussed above, the
numerical solutions converge to the stable solution, and furthermore the computed rate of
e-uniform convergence obtained is the same. With the initial guess u;,;; = 1, however, it
converges to the unstable solution after one iteration, as would be expected. On the other
hand, it is of some interest that for initial guesses as close to 1 as u;,;, = .98, the solutions
converge to the stable solution, with essentially the same e-uniform rate as the above examples.
The results for this case are given in Table 5.8.

Tables 5.9-5.13 give the corresponding numerical results for the problem (5.1), (5.3).
Again, it may be observed that for all the initial guesses discussed, convergence to the true
solution occurs and the computed rate of ¢-uniform convergence of the scheme is essentially
the same, independent of the initial guess.
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TABLE 5.8
Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =1, u(l) =1

Initial guess :

Uinit = 98

256

16

32

64
017859

.008659

128

.003989

145661

072771

.036182

1.04

1.09

Ey

94

1.02

1.02

1.03

PN

TABLE 5.9
Maximum errors Ey and computed rates of convergence py.

u(@ =1, u(l)=1

Boundary conditions:

Initial guess :

Uinit = 0

256

N 8

16

32

64

128
005637

.002595

.048050

023691

011648

1.05

1.09

Ey | 097937

1.08

1.04

1.04

1.06

PN

TABLE 5.10
Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =1, u(l) =1

Initial guess :

Ujnir = .5

256

N 8

16

32 64

128
005632

002593

048014

023672

011638

1.09

Ey | 097873

1.08

1.04

1.04

1.05

1.06

PN

TaBLE 5.11
Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =.5, u(l) =.7

Initial guess :

Winir = 0

256

64

N 8

16 32

128
004239

.001952

036008

017791

.073090

.008755

1.09

Ey
PN

1.05

1.04

1.07

1.03

1.05

TABLE 5.12
Maximum errors Ey and computed rates of convergence py.

Boundary conditions: u(0) =.5, u(l) =.7

Initial guess :

Uinis = .5

64

128

256

N 8 16

32

.001950

035977

017774

008747

.004235

073034

1.05

1.09

Eyn
PN

1.04

1.03

1.05

1.07

TABLE 5.13
Maximum errors Ey and computed rates of convergence py.

Boundary conditions: w(0) =.5, u(1)=.7
Uinis = u(0) + (u(1) — u(0))x

Initial guess :

64

128

256

8 16

32

.001951

En | 073063 | .035993

017782

.008751

.004237

1.09

1.04

PN 1.05 1.07

1.03

1.05
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